Abstract:
A computer (host), which is communicating with an interactive whiteboard projector (client) through a remote desktop connection, launches third-party applications supporting multiple mice (i.e. drawing pens) and provides these applications with virtual mouse device and input event signals for each pen device connected on the projector. The applications will behave as if the host system were configured with multiple installed mice, though no added driver or physical connected hardware is present.
Abstract:
A first Gray code technique and a second raster calibration technique can be combined to create a precise mapping between pixel locations of the camera and pixel locations of the projector(s). In one aspect the technique of using the raster calibration images is eliminated by interpolating the projector coordinate information decoded from the Gray code images. In another aspect camera images are processed to reduce errors caused by noise so that text can be displayed without any noticeable misalignment between projectors. In a third aspect, a scale factor is calculated based on the relative height/width of projector regions in the captured calibration images. Calibration images are recalculated using the scale factor to provide greater correspondence between the mapping of a low resolution camera to the high-resolution projectors.
Abstract:
A method having corresponding apparatus and computer-readable media embodying instructions executable by a computer to perform the method comprises: in response to a request to print an image stored on a first website, automatically downloading an image editing pipeline for the image from a second website in response to the request, wherein the image editing pipeline describes one or more image editing operations for the image; automatically downloading the image from the first website; automatically generating an edited image based on the image and the image editing pipeline; and automatically printing the edited image on a printer.
Abstract:
A method for correcting a projection from a plurality of digital projectors is provided. The method includes receiving as an input a matrix which maps each pixel to be projected to a captured pixel that includes a row value and a column value and detecting a shift with respect row or column values in the matrix. The method further includes determining attributes of the shift, wherein the attributes include a type for the shift and an overlap length for the shift. A gradient length is determined from the overlap length. A gradient of pixel weightings is generated for each gradient length. The pixel weightings are uniformly sloping and are associated with pixels in the gradient length and neighboring pixels. Intersecting gradients re merged and a list that includes common points and diagonal points is created from the merging process. The method operations may be embodied as code on a computer readable storage medium.
Abstract:
Methods having corresponding apparatus and computer-readable media comprise: capturing an image of a shape projected upon a display surface; and determining a first rectangle that is the largest inscribed rectangle for the shape, comprising generating a rectangular bounding box containing the shape, dividing the rectangular bounding box vertically into first and second sections, determining a second rectangle that is the largest inscribed rectangle for the shape in the first section of the bounding box, determining a third rectangle that is the largest inscribed rectangle for the shape in the second section of the bounding box, dividing the rectangular bounding box horizontally into third and fourth sections, determining a fourth rectangle that is the largest inscribed rectangle for the shape in a third section of the bounding box, and determining a fifth rectangle that is the largest inscribed rectangle for the shape in the fourth section of the bounding box.
Abstract:
Methods having corresponding apparatus and computer-readable media comprise: receiving a first digital image representing a first composite projection, wherein each first composite projection comprises a plurality of overlapping component projections, wherein each of the component projections is generated by a respective projector; and generating one or more respective first intensity scaling maps for each of the projectors, comprising, for each of the first intensity scaling maps, identifying a displayed non-overlap projection region for the projector associated with the first intensity scaling map based on the first digital image, and generating a first intensity scaling map for the projector, comprising determining a distance to the nearest pixel within the displayed non-overlap region of the projector for each pixel outside the non-overlap region of the projector, and assigning a first intensity scaling value to each pixel outside the displayed non-overlap region of the projector based on the respective distance.
Abstract:
Methods having corresponding apparatus and tangible computer-readable media comprise: generating a second image based on a first image and a viewpoint transform, wherein the viewpoint transform represents a mapping between pixel locations of the first image and coordinates of a model of a curved display surface; and generating a third image based on the second image and a projection transform, wherein the projection transform represents a mapping between the coordinates of the model of the curved display surface and pixel locations of a projector; wherein the third image is projected upon the curved display surface by the projector.
Abstract:
Apparatus having corresponding computer-readable media comprises: a recording module adapted to record audio and video streams of a videoconference; a storage module adapted to store a media file associated with the videoconference; and a command module adapted to generate a command file comprising records for events that occur during the videoconference, wherein at least one of the records comprises a time of occurrence in the videoconference of an event associated with the media file, and a reference to the media file.
Abstract:
Apparatus having corresponding methods and computer-readable media comprises an input circuit to receive data over a communication channel, the data representing operation of a computer during an test interval and screen updates generated by the computer during the test interval; and a processor to generate a motion picture representing the test interval and contemporaneously comprising a stripchart area showing a first stripchart representing the operation of the computer based on the data, and a screen update area showing the screen updates represented by the second data stream; wherein the stripchart area and the screen update area are synchronized.
Abstract:
Apparatus having corresponding methods and computer-readable media comprises an input circuit to receive registration messages from virtual meeting servers, wherein each registration message comprises a network address of the respective virtual meeting server and an identification string for the respective virtual meeting server; a memory to store an association for each of the virtual meeting servers between the respective network addresses and the respective identification strings; wherein the input circuit receives virtual meeting invitation acceptance messages each comprising one of the identification strings; a processor to select the network addresses associated with the identification strings in the virtual meeting invitation acceptance messages; and an output circuit to transmit a redirect message in response to each of the virtual meeting invitation acceptance messages, wherein each of the redirect messages comprises the network address associated with the identification string in the corresponding virtual meeting invitation acceptance message.