Abstract:
An optical data storage and retrieval system that includes a phase change storage medium and dual energy sources. The phase change material may store information by undergoing a transformation from one structural state to another structural state through application of energy. The system is equipped with two energy sources, neither of which alone provides sufficient energy to effect the transformation. The combination of both energy sources, however, provides sufficient energy to induce the transformation needed to record information. The energy from either source may be optical, thermal, electromagnetic, mechanical or magnetic energy.
Abstract:
A light-plasmon coupling lens including an optically transparent substrate having a light incident surface and a light-plasmon coupling surface opposite the light incident surface. The light-plasmon coupling surface including at least a set of circular concentric peaks/valleys which form a Fourier sinusoidal pattern in the radial direction of the circular concentric peaks/valleys. A conformal layer of metal is deposited on the light-plasmon coupling surface of the substrate and has aperture at the center of thereof through which plasmons are transmitted. An optical recording medium including a light-plasmon coupling lens.
Abstract:
An optical recording medium includes a crystallizing layer for enhancing the crystallization of a phase change memory layer, an energy storage layer for aiding the state transformations of a phase change memory layer, and/or a modifying element for increasing absorption and contrast at short wavelengths. An optical data storage and retrieval system containing same. Also a light-plasmon coupling lens including an optically transparent substrate having a light incident surface and a light-plasmon coupling surface opposite the light incident surface. The light-plasmon coupling surface including at least a set of circular concentric peaks/valleys which form a Fourier sinusoidal pattern in the radial direction of the circular concentric peaks/valleys. A conformal layer of metal is deposited on the light-plasmon coupling surface of the substrate and has aperture at the center of thereof through which plasmons are transmitted.
Abstract:
Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus inhibits deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.
Abstract:
Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.
Abstract:
Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.
Abstract:
Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids unintended deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to activate or energize them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react or otherwise combine to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. Suitable deposition species include precursors that contain silicon, germanium, fluorine, and/or hydrogen. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.
Abstract:
Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.
Abstract:
A method of forming a photovoltaic device on a substrate, especially an opaque substrate. The method includes forming a photovoltaic material on a substrate and removing the substrate. The method may include patterning the photovoltaic material to form a plurality of photovoltaic devices and configuring the devices in series to achieve monolithic integration. The method may include forming additional layers on the substrate, such as one or more of a protective material, a transparent conductor, a back conductor, an adhesive layer, and a laminate support layer. When the substrate is opaque, the method provides the option of ordering the layers so that a transparent conductor is formed before the back reflector of a photovoltaic stack. This ordering of layers facilitates monolithic integration and the ability to remove the substrate allows the earlier-formed transparent conductor to serve as the point of incidence for receiving the light that excites the photovoltaic material. The method enables high speed manufacturing of monolithically integrated photovoltaic devices on opaque substrates.
Abstract:
Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.