Abstract:
A controller for use in interfacing with a virtual reality system is provided. The controller having a body with a proximate end and a distal end, and the distal end is opposite the proximate end. A handgrip portion of the body is disposed at the proximate end of the body. An extension portion of the body is coupled at the distal end of the body. The extension portion has a loop shape. A plurality of lights is disposed on surfaces of the extension portion, such that lights illuminate on an inside of the loop shape and on an outside of the loop shape.
Abstract:
A system and method of tracking a user input device such as a game controller includes emitting light from multiple light sources in the user input device. The multiple light sources having a known spacing relative to each other on the user input device and at least some of the multiple light sources are capable of emitting light through a inside surface and an outside surface of the user input device. The multiple light sources can define a plane of the user input device that can be used to track the movement, location and orientation of the user input device. The user device is tracked using image data from a camera. The image data is communicated to a computer where the image data is processed to identify the movement, location and orientation of the user input device.
Abstract:
Methods and systems for processing input by a computing device are presented. One method includes operations for receiving images of a control device that includes an object section, and for determining a location of the control device utilizing image analysis for each captured image. Additionally, the movement of the control device is tracked based on the determined locations, where the tracking of the movement includes receiving inertial sensor information obtained by sensors in the control device, and determining an orientation of the control device based on the sensor information. Additionally, the method includes an operation for translating the movement and orientation of the control device into input for a game executing in the computing device, where the input is translated into a motion and orientation of an object in the game based on the movement of the control device.
Abstract:
A controller for use in interfacing with a virtual reality system is provided. The controller having a body with a proximate end and a distal end, and the distal end is opposite the proximate end. A handgrip portion of the body is disposed at the proximate end of the body. An extension portion of the body is coupled at the distal end of the body. The extension portion has a loop shape. A plurality of lights is disposed on surfaces of the extension portion, such that lights illuminate on an inside of the loop shape and on an outside of the loop shape.
Abstract:
A controller for interfacing with an interactive application includes an interface region disposed on a surface of a body of the controller. The interface region includes a plurality of interface elements for providing input to the interactive application. One of the interface elements is an input surface that is defined by an indentation and is configured to receive touch input. Plurality of sensors disposed under the input surface detects movement of a finger of a user. Processing circuitry is used to analyze the movement of the finger of the user over the input surface and transmit signals that are used by the interactive application to drive interaction in the interactive application.
Abstract:
A controller for interfacing with an interactive application includes an interface region disposed on a surface of a body of the controller. The interface region includes a plurality of interface elements for providing input to the interactive application. One of the interface elements is an input surface that is defined by an indentation and is configured to receive touch input. Plurality of sensors disposed under the input surface detects movement of a finger of a user. Processing circuitry is used to analyze the movement of the finger of the user over the input surface and transmit signals that are used by the interactive application to drive interaction in the interactive application.
Abstract:
A controller for use in interfacing with a virtual reality system is provided. The controller having a body with a proximate end and a distal end, and the distal end is opposite the proximate end. A handgrip portion of the body is disposed at the proximate end of the body. An extension portion of the body is coupled at the distal end of the body. The extension portion has a loop shape. A plurality of lights is disposed on a surface of the extension portion, such that lights illuminate at least part of the loop shape.
Abstract:
A system and method of tracking a user input device such as a game controller includes emitting light from multiple light sources in the user input device. The multiple light sources having a known spacing relative to each other on the user input device and at least some of the multiple light sources are capable of emitting light through a inside surface and an outside surface of the user input device. The multiple light sources can define a plane of the user input device that can be used to track the movement, location and orientation of the user input device. The user device is tracked using image data from a camera. The image data is communicated to a computer where the image data is processed to identify the movement, location and orientation of the user input device.
Abstract:
A controller for use in interfacing with a virtual reality system is provided. The controller having a body with a proximate end and a distal end, and the distal end is opposite the proximate end. A handgrip portion of the body is disposed at the proximate end of the body. An extension portion of the body is coupled at the distal end of the body. The extension portion has a loop shape. A plurality of lights is disposed on a surface of the extension portion, such that lights illuminate at least part of the loop shape.
Abstract:
Methods and systems for processing input by a computing device are presented. One method includes operations for receiving images of a control device that includes an object section, and for determining a location of the control device utilizing image analysis for each captured image. Additionally, the movement of the control device is tracked based on the determined locations, where the tracking of the movement includes receiving inertial sensor information obtained by sensors in the control device, and determining an orientation of the control device based on the sensor information. Additionally, the method includes an operation for translating the movement and orientation of the control device into input for a game executing in the computing device, where the input is translated into a motion and orientation of an object in the game based on the movement of the control device.