摘要:
A system and method is provided for modeling characteristics of a melt pool that forms during an additive manufacturing process. The system may include at least one processor configured to generate a data-driven model capable of predicting melt pool temperature and melt pool area for target deposit location points along at least one tool path for a three dimensional (3D) printer at which a laser of the 3D printer melts new deposits of material to buildup a product. The generation of the data-driven model may be based at least in part on melt pool temperatures and melt pool areas for a selected nearest subset of a plurality of previous deposit location points along the at least one tool path. The nearest subset may be selected based on determined spatio-temporal distance between a respective target deposit location point and each of the plurality of previous deposit location points along the at least one tool path.
摘要:
A system and method are provided for adaptive domain reduction for thermo-structural simulation of an additive manufacturing process. The system may include a processor configured to carry out a simulation of a part being additively produced according to a set of tool paths. The simulation may include determining an original mesh of the part; determining an order of the elements of the original mesh to deposit; and simulating an incremental deposit of each of the elements of the original mesh for a material in the order that the elements are determined to be deposited. For each incremental deposit of an additional respective element the processor may determine thermal characteristics and structural deformation characteristics of the deposited elements. After the deposit of several layers have been simulated, subsequent simulation of elements may be carried out based on a respective modified version of the original mesh in which at least some of the layers of the original mesh previously simulated to be deposited under a current layer are retained and at least some are omitted.
摘要:
Methods for automatic creation of workflows for design or simulation of a product to be manufactured and corresponding systems and computer-readable mediums. A method includes tracking a current workflow, by a data processing system, to produce current workflow data. The method includes converting the current workflow data into current workflow knowledge. The method includes predicting next actions for the current workflow, based on the current workflow knowledge and a contextual knowledge graph, to produce an automatically created workflow. The method includes implementing the automatically created workflow.
摘要:
Methods for computer-aided simulation of multi-layer selective laser sintering and melting additive manufacturing processes and corresponding systems and computer-readable mediums. A method includes receiving a solid model. The method includes slicing the solid model geometry along a build direction and creating 3D meshes that represent manufacturing layers. The method includes simulating manufacture of each of the 3D meshes to produce corresponding deformed 3D meshes. The method includes building a 3D mesh model from the deformed 3D meshes. The method includes displaying the 3D mesh model.
摘要:
A method of partitioning a model to facilitate printing of the model on a 3D printer includes identifying partition sensitive locations on the model and creating a binary tree with a root note representative of the model. An iterative partitioning process is applied to divide the model into objects by selecting a node of the binary tree without any children nodes, identifying a portion of the model corresponding to the node, and determining candidate cutting planes on the portion of the model based on the partition sensitive locations. During the process, analytic hierarchical processing (AHP) is applied to select an optimal cutting plane from the candidate cutting planes based on partitioning criteria. The optimal cutting plane is used to segment the portion of the model into sub-portions, and two children nodes representative of these sub-portions are created on the node of the binary tree.
摘要:
A system and method is provided that facilitates optimizing tool paths based on thermal/structural simulations of a part produced via a 3D-printer. A processor may carry out a first simulation of the part being additively produced according to a first set of tool paths that correspond to instructions usable to drive the 3D-printer to produce the part. The first simulation may include: determining a hexahedral mesh of the part that includes a plurality of hexahedron elements; determining an order of the elements of the mesh to deposit for additively producing the part based on the first set of tool paths; and simulating an incremental deposit of each of the elements of the mesh in the order that the elements are determined to be deposited. For each incremental deposit of an additional respective element, thermal characteristics and structural deformation characteristics of the deposited elements are determined, in which some elements have a change in volume to account for a structural deformation of previously deposited adjacent elements.
摘要:
A method of partitioning a model to facilitate printing of the model on a 3D printer includes identifying partition sensitive locations on the model and creating a binary tree with a root note representative of the model. An iterative partitioning process is applied to divide the model into objects by selecting a node of the binary tree without any children nodes, identifying a portion of the model corresponding to the node, and determining candidate cutting planes on the portion of the model based on the partition sensitive locations. During the process, analytic hierarchical processing (AHP) is applied to select an optimal cutting plane from the candidate cutting planes based on partitioning criteria. The optimal cutting plane is used to segment the portion of the model into sub-portions, and two children nodes representative of these sub-portions are created on the node of the binary tree.
摘要:
A method and system is provided for computer-aided simulation of multi-layer selective laser sintering and melting in an additive manufacturing processes. The method may include receiving a solid model. The method may also include slicing the solid model geometry along a build direction and creating 3D meshes that represent manufacturing layers. In addition, the method may include simulating manufacture of each of the 3D meshes to produce corresponding deformed 3D meshes. Further, the method may include building a 3D mesh model from the deformed 3D meshes and displaying the 3D mesh model.
摘要:
Methods for modeling of parts with lattice structures and corresponding systems and computer-readable mediums. A method includes receiving a model of an object to be manufactured. The method includes receiving a user specification of a void region within the model to create a lattice. The method includes performing a trimming operation to create a trimmed lattice by tessellating void surfaces and grouping together at least one row of connected rods to be treated as a single entity.