Abstract:
An air conditioner device includes a housing, a first electrode disposed in the housing, and a second electrode removably disposed in the housing. The second electrode can be manually removed from the housing and then manually returned to a resting position within the housing. A base member is attached to a bottom portion of the second electrode. An at least partially flexible cleaning member is attached to the base member. The cleaning member frictionally cleans the first electrode when, after being removed from the housing, the second electrode is manually returned to the resting position within the housing.
Abstract:
Methods for cleaning a first group of electrodes contained within an air conditioner are provided. A second group of electrodes within the air conditioner has a cleaning device fastened therewith. The cleaning device engages the first group of electrodes. A method includes removing the second group of electrodes from the air conditioner, and replacing the second group of electrodes back into the air conditioner.
Abstract:
An electrode cleaner for an electro-kinetic transporter-conditioner includes a mechanism to clean one or more the wire-like electrodes of a first electrode array. A length of flexible electrically insulating material projects from a base of a second electrode array towards and beyond the first electrode array. The distal end of the material includes a slit that engages a corresponding wire-like electrode. As a user moves the second electrode array up or down within the conditioner housing, friction between slit edges and the wire-like electrode cleans the electrode surface. The sheet material maybe biasedly pivotably attached to the base of the second electrode array, and may be urged away from and generally parallel to the wire-like electrodes when the conditioner is in use.
Abstract:
An electro-kinetic electro-static air conditioner includes a mechanism to clean the wire-like electrodes in the first electrode array. A length of flexible Mylar type sheet material projects from the base of the second electrode array towards and beyond the first electrode array. The distal end of each sheet includes a slit that engages a corresponding wire-like electrode. As a user moves the second electrode array up or down within the conditioner housing, friction between slit edges and the wire-like electrode cleans the electrode surface. The sheet material may be biasedly pivotably attached to the base of the second electrode array, and may be urged away from and parallel to the wire-like electrodes when the conditioner is in use. Another embodiment includes a bead-like member having a through opening or channel, through which the wire-like electrode passes. As the conditioner is turned upside down and rightside up, friction between the opening in the bead-like member and wire-like electrode cleans the electrode surface. The bead-like member may be made of ceramic, glass, or even metal. The through channel may be symmetrically formed in the bead-like member, but preferably will be asymmetrical to create a mechanical moment and increased friction with the surface of the wire-like electrode being cleaned.
Abstract:
An air conditioner device includes a first electrode array and a second electrode array. A mechanism, that cleans the electrode(s) in a first electrode array, includes a length of flexible insulating material that projects from a base of the second electrode array towards the first electrode array. As a user moves the second electrode array up or down within the conditioner housing, the electrode(s) in the first array are frictionally cleaned.
Abstract:
An electro-kinetic electro-static air conditioner includes a mechanism to clean the wire-like electrodes in the first electrode array. A length of flexible MYLAR type sheet material projects from the base of the second electrode array towards and beyond the first electrode array. The distal end of each sheet includes a slit that engages a corresponding wire-like electrode. As a user moves the second electrode array up or down within the conditioner housing, friction between slit edges and the wire-like electrode cleans the electrode surface. The sheet material maybe biasedly pivotably attached to the base of the second electrode array, and may be urged away from and parallel to the wire-like electrodes when the conditioner is in use. Another embodiment includes a bead-like member having a through opening or channel, through which the wire-like electrode passes. As the conditioner is turned upside down and rightside up, friction between the opening in the bead-like member and wire-like electrode cleans the electrode surface. The bead-like member maybe made of ceramic, glass, or even metal. The through channel maybe symmetrically formed in the bead-like member, but preferably will be asymmetrical to create a mechanical moment and increased friction with the surface of the wire-like electrode being cleaned.