摘要:
A field emission display and a method of manufacturing the same are provided. The field emission display includes an anode plate where an anode electrode and a fluorescent layer are formed, a cathode plate where an electron emission source emitting electrons toward the fluorescent material layer and a gate electrode having a gate hole through which the electrons travel are formed, a mesh grid having an electron control hole corresponding to the gate hole and adhered to the cathode plate, and an insulation layer formed on a surface of the mesh grid facing the cathode plate, and spacers provided between the anode plate and the mesh grid so that the mesh grid can be adhered to the cathode plate due to a negative pressure existing between the anode plate and the cathode plate.
摘要:
A field emission display and a method of manufacturing the same are provided. The field emission display includes an anode plate where an anode electrode and a fluorescent layer are formed, a cathode plate where an electron emission source emitting electrons toward the fluorescent material layer and a gate electrode having a gate hole through which the electrons travel are formed, a mesh grid having an electron control hole corresponding to the gate hole and adhered to the cathode plate, and an insulation layer formed on a surface of the mesh grid facing the cathode plate, and spacers provided between the anode plate and the mesh grid so that the mesh grid can be adhered to the cathode plate due to a negative pressure existing between the anode plate and the cathode plate.
摘要:
Provided is a field emission device using carbon nanotubes. The field emission device includes a substrate, a cathode, a gate insulating layer, an electron emitter, and a gate electrode. The cathode is formed on the substrate. The gate insulating layer is formed on the cathode and has a well exposing a portion of the cathode. The electron emitter is formed on the exposed portion of the cathode. The gate electrode is formed on the gate insulating layer and has a gate hole corresponding to the well. The gate electrode further includes a cylindrical electrode part that forms a focusing electric field from the gate hole toward a proceeding path of an electron beam. Accordingly, a focusing electric field can be formed around an electron beam emitted from the electron emitter so as to converge and focus the electron beam passing through the focusing electric field. As a result, color purity, brightness, and durability can be improved.
摘要:
A method of fabricating a field emission display employing carbon nanotubes (CNTs) as electron emitters is provided. The method includes forming a cathode on a substrate; forming a gate insulation layer having a plurality of gate holes on the cathode; forming a gate electrode having a plurality of via-holes corresponding to the gate holes, respectively, on the gate insulation layer; forming a plurality of conductive columns higher than the gate electrode on the cathode within the respective gate holes; adhering the CNTs to the bottom of a plate template which is separately provided; bringing the bottom of the template having the CNTs to contact the tops of the conductive columns to adhere the CNTs to the tops of the conductive columns; and firing the conductive columns to lower the levels thereof. Accordingly, the problems of conventional methods, such as sinking of CNTs caused by screen printing, residual CNTs remaining within a gate when a lift-off method is used and short circuiting between gate and cathode due to the residual CNTs, can be solved. In addition, CNTs are applied to only a part for field emission, that is, only the top of a conductive column, thereby requiring fewer CNTs and decreasing fabrication cost. Moreover, the method uses stamping in order to form CNTs, so it is very advantageous in mass production.
摘要:
A field emission display device and a method of fabricating the same are provided. The field emission display device may include a substrate, a transparent cathode layer, an insulation layer, a gate electrode, a resistance layer, and carbon nanotubes. The transparent cathode layer is deposited on the substrate. The insulation layer is formed on the cathode layer and has a well exposing the cathode layer. The gate electrode is formed on the insulation layer and has an opening corresponding to the well. The resistance layer is formed to surround the surface of the gate electrode and the inner walls of the opening and the well so as to block ultraviolet rays. The carbon nanotube field emitting source is positioned on the exposed cathode layer.
摘要:
A field emission display device and a method of fabricating the same are provided. The field emission display device includes a substrate, a transparent cathode layer, an insulation layer, a gate electrode, a resistance layer, and carbon nanotubes. The transparent cathode layer is deposited on the substrate. The insulation layer is formed on the cathode layer and has a well exposing the cathode layer. The gate electrode is formed on the insulation layer and has an opening corresponding to the well. The resistance layer is formed to surround the surface of the gate electrode and the inner walls of the opening and the well so as to block ultraviolet rays. The carbon nanotube field emitting source is positioned on the exposed cathode layer. An alignment error between the gate electrode and the cathode is removed, and carbon nanotube paste is prevented from remaining during development, thereby preventing current leakage and short circuit between the electrodes and diode emission. Accordingly, the performance of the field emission display device can be improved.
摘要:
A method of manufacturing a field emission device. In the method, emitters are formed using a lift-off process, and an isolation layer is formed between a sacrificial layer for patterning the emitters and emitter materials. The isolation layer prevents the sacrificial layer from reacting on the emitter materials to facilitate the lift-off process. Thus, the field emission device, which uniformly emits light having a high brightness, can be obtained.
摘要:
A field emission display device and a method of fabricating the same are provided. The field emission display device includes a substrate, a transparent cathode layer, an insulation layer, a gate electrode, a resistance layer, and carbon nanotubes. The transparent cathode layer is deposited on the substrate. The insulation layer is formed on the cathode layer and has a well exposing the cathode layer. The gate electrode is formed on the insulation layer and has an opening corresponding to the well. The resistance layer is formed to surround the surface of the gate electrode and the inner walls of the opening and the well so as to block ultraviolet rays. The carbon nanotube field emitting source is positioned on the exposed cathode layer. An alignment error between the gate electrode and the cathode is removed, and carbon nanotube paste is prevented from remaining during development, thereby preventing current leakage and short circuit between the electrodes and diode emission. Accordingly, the performance of the field emission display device can be improved.
摘要:
The field emission device includes a substrate, a cathode, a gate insulating layer, an electron emitter, and a gate electrode. The cathode is formed on the substrate. The gate insulating layer is formed on the cathode and has a well exposing a portion of the cathode. The electron emitter is formed on the exposed portion of the cathode. The gate electrode is formed on the gate insulating layer and has a gate hole corresponding to the well. The gate electrode further includes a cylindrical electrode part that forms a focusing electric field from the gate hole toward a proceeding path of an electron beam. Accordingly, a focusing electric field can be formed around an electron beam emitted from the electron emitter so as to converge and focus the electron beam passing through the focusing electric field. As a result, color purity, brightness, and durability can be improved.
摘要:
A panel for a field emission type backlight device may include a substrate having a plurality of grooves formed on a side of it. The grooves can serve to diverge incident light. An anode electrode and a fluorescent layer may be provided sequentially on the same side of the substrate.