Abstract:
The embodiments of the invention relate to a method for creating a force for a welding jaw of a vertical tubular bag machine. The welding jaw is moved back and forth along a path to strike a second welding jaw moving in the opposite direction. A tubular film is compressed between the second jaw and at least one sealing surface of the welding jaws, to weld the tubular film by ultrasonic vibrations applied thereto via the sealing surface at an applied pressure under a sealing force (Fs) within a sealing time (ts). The sealing force (Fs) is predetermined by a control unit such that the sealing force (Fs) runs along a sealing force curve within the sealing time (ts). The sealing force curve has a first relative sealing force maximum (Fs1) and at least one second relative sealing force maximum (Fs2), wherein (Fs1) is lower than (Fs2).
Abstract:
The embodiments of the invention relate to a method for creating a force for a welding jaw of a vertical tubular bag machine. The welding jaw is moved back and forth along a path to strike a second welding jaw moving in the opposite direction. A tubular film is compressed between the second jaw and at least one sealing surface of the welding jaws, to weld the tubular film by ultrasonic vibrations applied thereto via the sealing surface at an applied pressure under a sealing force (Fs) within a sealing time (ts). The sealing force (Fs) is predetermined by a control unit such that the sealing force (Fs) runs along a sealing force curve within the sealing time (ts). The sealing force curve has a first relative sealing force maximum (Fs1) and at least one second relative sealing force maximum (Fs2), wherein (Fs1) is lower than (Fs2).
Abstract:
The invention relates to a method for generating a welding force and/or a welding pressure for a welding jaw, in particular a welding jaw of a cross-sealing station of a vertical tubular bag machine, in which the sealing force or a sealing parameter, which correlates with the sealing force, in particular the sealing pressure or the drive power of the drive, is predetermined by a control unit during the sealing time, such that the sealing force runs along a sealing force curve within the sealing time, such that the sealing force curve has a first relative sealing force maximum with a sealing force and at least one second relative sealing force maximum with a sealing force, such that the sealing force at the first sealing force maximum is higher than the sealing force at the second sealing force maximum.
Abstract:
The invention relates to a method for generating a welding force and/or a welding pressure for a welding jaw, in particular a welding jaw of a cross-sealing station of a vertical tubular bag machine, in which the sealing force or a sealing parameter, which correlates with the sealing force, in particular the sealing pressure or the drive power of the drive, is predetermined by a control unit during the sealing time, such that the sealing force runs along a sealing force curve within the sealing time, such that the sealing force curve has a first relative sealing force maximum with a sealing force and at least one second relative sealing force maximum with a sealing force, such that the sealing force at the first sealing force maximum is higher than the sealing force at the second sealing force maximum.
Abstract:
A carrier (4) with articles (2) provided thereon is moved quickly toward a package (3) and is slowed down at the package (3) such that by utilizing the articles (2) kinetic energy, they slide off the carrier (4) and move into the package (3). The carrier (4) can thus be returned to an article receiving position during the feed-in process for the articles (2) in order to receive new articles (2), which can be, for example filled tubular bags.