摘要:
A liquid ejecting head comprises a pressure generation chamber communicating with a nozzle opening, a vibrating wall provided as one surface of the pressure generation chamber and vibrates so that ejects the liquid from the nozzle opening, and a resin portion having a recessed arc-shape and formed in a corner of the pressure generation chamber and formed of a resin material having a Young's modulus of less than or equal to 10 GPa. A ratio r/w of a radius r of the surface of the resin portion to a width w of the pressure generation chamber defined by the vibrating wall is greater than or equal to 0.017 and less than or equal to 0.087.
摘要:
There is provided a piezoelectric device comprising a first electrode, a piezoelectric layer that is formed above the first electrode, a second electrode that is formed above the piezoelectric layer and a coating layer that is formed above the second electrode consisting of tungsten or titanium.
摘要:
In a method of controlling a liquid ejecting apparatus, where the liquid ejecting apparatus includes a pressure chamber that communicates with a nozzle that ejects a liquid, a drive element that changes a pressure of the liquid in the pressure chamber, and a drive circuit that supplies the drive element with an ejection pulse that generates a change in the pressure that ejects the liquid from the nozzle, the method includes specifying a viscosity of the liquid in the nozzle and a surface tension of the liquid in the nozzle from a residual vibration when the pressure of the liquid in the pressure chamber is changed, and controlling a waveform of the ejection pulse according to the viscosity and the surface tension.
摘要:
A liquid ejecting head includes a flow channel forming substrate having pressure generation chambers communicating with a nozzle opening and arranged in parallel along a lateral direction. A piezoelectric element is provided on one surface of the flow channel forming substrate in correspondence to the pressure generation chamber, and has a first electrode, a piezoelectric layer provided on the first electrode and a second electrode provided on the piezoelectric layer. In a direction intersecting with the arrangement direction of the pressure generation chambers, in boundaries between an active section that is a substantial driving section and an inactive section that is not a substantial driving section of the piezoelectric layer, the first electrode includes a taper section of which a width is gradually decreased toward the boundary from the active section side.
摘要:
There is provided a piezoelectric device comprising a first electrode, a piezoelectric layer that is formed above the first electrode, a second electrode that is formed above the piezoelectric layer and a coating layer that is formed above the second electrode consisting of tungsten or titanium.
摘要:
A liquid ejecting head comprises a pressure generation chamber communicating with a nozzle opening, a vibrating wall provided as one surface of the pressure generation chamber and vibrates so that ejects the liquid from the nozzle opening, and a resin portion having a recessed arc-shape and formed in a corner of the pressure generation chamber and formed of a resin material having a Young's modulus of less than or equal to 10 GPa. A ratio r/w of a radius r of the surface of the resin portion to a width w of the pressure generation chamber defined by the vibrating wall is greater than or equal to 0.017 and less than or equal to 0.087.
摘要:
In a method of controlling a liquid ejecting apparatus, where the liquid ejecting apparatus includes a pressure chamber that communicates with a nozzle that ejects a liquid, a drive element that changes a pressure of the liquid in the pressure chamber, and a drive circuit that supplies the drive element with an ejection pulse that generates a change in the pressure that ejects the liquid from the nozzle, the method includes specifying a viscosity of the liquid in the nozzle and a surface tension of the liquid in the nozzle from a residual vibration when the pressure of the liquid in the pressure chamber is changed, and controlling a waveform of the ejection pulse according to the viscosity and the surface tension.
摘要:
A liquid ejection head includes a substrate in which a pressure generating chamber that communicates with a nozzle opening is formed; and a piezoelectric element having a piezoelectric layer, a first electrode that is formed on a surface of the piezoelectric layer on a side of the substrate so as to correspond to the pressure generating chamber, and a second electrode that is formed on a surface of the piezoelectric layer opposite to the side on which the first electrode is formed so as to extend over a plurality of the pressure generating chambers, wherein the second electrode is formed to extend to an outside of the pressure generating chamber in a longitudinal direction of the pressure generating chamber.
摘要:
A liquid ejection head includes a substrate in which a pressure generating chamber that communicates with a nozzle opening is formed; and a piezoelectric element having a piezoelectric layer, a first electrode that is formed on a surface of the piezoelectric layer on a side of the substrate so as to correspond to the pressure generating chamber, and a second electrode that is formed on a surface of the piezoelectric layer opposite to the side on which the first electrode is formed so as to extend over a plurality of the pressure generating chambers, wherein the second electrode is formed to extend to an outside of the pressure generating chamber in a longitudinal direction of the pressure generating chamber.
摘要:
A liquid ejecting head comprises a pressure generation chamber communicating with a nozzle opening, a vibrating wall provided as one surface of the pressure generation chamber and vibrates so that ejects the liquid from the nozzle opening, and a resin portion having a recessed arc-shape and formed in a corner of the pressure generation chamber and formed of a resin material having a Young's modulus of less than or equal to 10 GPa. A ratio r/w of a radius r of the surface of the resin portion to a width w of the pressure generation chamber defined by the vibrating wall is greater than or equal to 0.017 and less than or equal to 0.087.