摘要:
The present invention provides an optical module in which the level of the lead frame coincides with the optical axis of the fiber. The module 1 comprises a container 4, a subassembly 2, a base member 5 and a lead frame 6. The subassembly 2 includes a substrate, on which the semiconductor optical device and the optical fiber are mounted. The container 4 has a pair of surface. One surface is securing the lead frame thereon while the base member is attached to the other surface of the container 4. The base member comprises an island portion and a frame portion. The subassembly 2 is placed on the island and the frame portion is fixed to the container 4. Island support portions connecting the island portion to the frame portion is deformed in the molding process, thus aligning the subassembly 2.
摘要:
The present invention provides an optical module in which the level of the lead frame coincides with the optical axis of the fiber. The module 1 comprises a container 4, a subassembly 2 and a lead frame 6. The subassembly includes a substrate, on which the semiconductor optical device and the optical fiber are mounted. The lead frame has a pair of fixing bar and inner leads. The fixing bars extend along a first direction and attach to regions on the container. Respective inner leads extend along a second direction intersecting the first direction and have tips facing to respective fixing bars.
摘要:
An optical transceiver is disclosed, where the optical transceiver includes an optical subassembly (OSA) with a bottom plate for dissipating heat and connected to an electronic circuit with a flexible printed circuit (FPC). The FPC is soldered with the side electrodes of the OSA as forming a solder fillet in the plane electrode, or the FPC is soldered with the plane electrodes of the OSA as forming the solder fillet in the side electrodes, and leaving a limited room for receiving the curved FPC in peripheries of the OSA.
摘要:
An optical transceiver is disclosed, where the optical transceiver includes an optical subassembly (OSA) with a bottom plate for dissipating heat and connected to an electronic circuit with a flexible printed circuit (FPC). The FPC is soldered with the side electrodes of the OSA as forming a solder fillet in the plane electrode, or the FPC is soldered with the plane electrodes of the OSA as forming the solder fillet in the side electrodes, and leaving a limited room for receiving the curved FPC in peripheries of the OSA.
摘要:
The optical transceiver of the present invention is one type of the pluggable transceiver that is inserted into/extracted from the cage in the host system. The transceiver includes the OSA (Optical Sub-Assembly) unit, which shows the optical function, and the body unit installing the electronic circuit. The OSA unit includes the receptacle member, the tab plate and transmitting/receiving sub-assemblies. The body unit includes the base installing the circuit board, the heat conducting plate to conduct heat generated by the IC on the substrate to the rear end of the transceiver, the supplementary substrate, the supporting plate, and the cover for putting these components therein. In the present transceiver, the heat is effectively conducted to the rear end thereof the heat conducting plate, besides, the tab plate, the heat conducting plate, and the supporting plate are made only by cutting, bending and tapping without any welding and gluing. Therefore, the present invention may provide an optical pluggable transceiver with superior heat dissipating function by cost saved configuration.
摘要:
The optical transceiver of the present invention is one type of the pluggable transceiver that is inserted into/extracted from the cage in the host system. The transceiver includes the OSA (Optical Sub-Assembly) unit, which shows the optical function, and the body unit installing the electronic circuit. The OSA unit includes the receptacle member, the tab plate and transmitting/receiving sub-assemblies. The body unit includes the base installing the circuit board, the heat conducting plate to conduct heat generated by the IC on the substrate to the rear end of the transceiver, the supplementary substrate, the supporting plate, and the cover for putting these components therein. In the present transceiver, the heat is effectively conducted to the rear end thereof the heat conducting plate, besides, the tab plate, the heat conducting plate, and the supporting plate are made only by cutting, bending and tapping without any welding and gluing. Therefore, the present invention may provide an optical pluggable transceiver with superior heat dissipating function by cost saved configuration.
摘要:
The optical transceiver of the present invention is one type of the pluggable transceiver that is inserted into/extracted from the cage in the host system. The transceiver includes the OSA (Optical Sub-Assembly) unit, which shows the optical function, and the body unit installing the electronic circuit. The OSA unit includes the receptacle member, the tab plate and transmitting/receiving sub-assemblies. The body unit includes the base installing the circuit board, the heat conducting plate to conduct heat generated by the IC on the substrate to the rear end of the transceiver, the supplementary substrate, the supporting plate, and the cover for putting these components therein. In the present transceiver, the heat is effectively conducted to the rear end thereof the heat conducting plate, besides, the tab plate, the heat conducting plate, and the supporting plate are made only by cutting, bending and tapping without any welding and gluing. Therefore, the present invention may provide an optical pluggable transceiver with superior heat dissipating function by cost saved configuration.
摘要:
The optical transceiver of the present invention is one type of the pluggable transceiver that is inserted into/extracted from the cage in the host system. The transceiver includes the OSA (Optical Sub-Assembly) unit, which shows the optical function, and the body unit installing the electronic circuit. The OSA unit includes the receptacle member, the tab plate and transmitting/receiving sub-assemblies. The body unit includes the base installing the circuit board, the heat conducting plate to conduct heat generated by the IC on the substrate to the rear end of the transceiver, the supplementary substrate, the supporting plate, and the cover for putting these components therein. In the present transceiver, the heat is effectively conducted to the rear end thereof the heat conducting plate, besides, the tab plate, the heat conducting plate, and the supporting plate are made only by cutting, bending and tapping without any welding and gluing. Therefore, the present invention may provide an optical pluggable transceiver with superior heat dissipating function by cost saved configuration.
摘要:
An optical transceiver with an enhanced EMI shielding is disclosed. The optical transceiver of the invention provides an optical receptacle made of metal and an optical subassembly with a metal cover assembled with the optical receptacle. The metal cover electro-magnetically divides the inside from the outside of the transceiver. The metal cover provides a plate portion and an edge portion, where the former portion forms an opening through which the sleeve passes without coming in contact with the metal cover, while, the latter of which comes in contact with the receptacle.
摘要:
A bi-direction optical module with an arrangement to reduce the crosstalk noise is disclosed. The optical module comprises a laser diode (LD) driven by a differential signal and a photodiode (PD) on a single package. The PD is mounted on a position where the electrical potential measured from respective interconnections connected to the anode and to the cathode of the LD becomes the midpoint of the interconnections. The capacitances with respect the stem, where the LD and the PD are mounted thereon, viewed from the anode and the cathode of the LD becomes substantially equal to each other, or distances from the PD to respective interconnections are adjusted depending on the length of the interconnection facing the PD. Twisting the interconnections to the LD may be effective to reduce the crosstalk.