Abstract:
A mode selection unit, a blower unit and a temperature control unit are mounted on a cluster panel of a vehicle. The mode selection unit, the blower unit and the temperature control unit have a function of controlling the wind blow position, a function of controlling the wind blow rate and a function of controlling the wind blow temperature respectively, and are constituted by operating mechanisms mechanically separated from one another. Accordingly, the degree of freedom in the layout of the mode selection unit to the temperature control unit is improved so that it becomes easy to dispose them in accordance with the vehicle-side design.
Abstract:
A mode selection unit, a blower unit and a temperature control unit are mounted on a cluster panel of a vehicle. The mode selection unit, the blower unit and the temperature control unit have a function of controlling the wind blow position, a function of controlling the wind blow rate and a function of controlling the wind blow temperature respectively, and are constituted by operating mechanisms mechanically separated from one another. Accordingly, the degree of freedom in the layout of the mode selection unit to the temperature control unit is improved so that it becomes easy to dispose them in accordance with the vehicle-side design.
Abstract:
A gear portion is provided on the inner peripheral surface of a dial, and a large diameter portion of a main driving gear is mated with the gear portion. A driven gear is mated with a small diameter portion of the main driving gear, and the state of an air conditioner is switched based on the moving operation of a cable through the gear portion, the main driving gear and the driven gear in the rotating operation of the dial. With this structure, it is not necessary to provide a rotary shaft as a member for transmitting an operating force to the central part or the dial. Consequently, it is possible to maintain a space in the central part of the dial. Thus, restrictions can be decreased in the case in which a knob is to be arranged.
Abstract:
A gear portion is provided on the inner peripheral surface of a dial, and a large diameter portion of a main driving gear is mated with the gear portion. A driven gear is mated with a small diameter portion of the main driving gear, and the state of an air conditioner is switched based on the moving operation of a cable through the gear portion, the main driving gear and the driven gear in the rotating operation of the dial. With this structure, it is not necessary to provide a rotary shaft as a member for transmitting an operating force to the central part or the dial. Consequently, it is possible to maintain a space in the central part of the dial. Thus, restrictions can be decreased in the case in which a knob is to be arranged.
Abstract:
A plurality of click portions is formed integrally with a unit body. The click portions are arranged on a common circular track, and a dial is engaged with the click portions so as to be unstable and to be prevented from slipping off. Therefore, it is not necessary to provide a D spring for coupling the dial to a shaft so as to be unstable and to be prevented from slipping off. Consequently, it is possible to reduce the number of components and a cost.
Abstract:
A plurality of click portions is formed integrally with a unit body. The click portions are arranged on a common circular track, and a dial is engaged with the click portions so as to be unstable and to be prevented from slipping off. Therefore, it is not necessary to provide a D spring for coupling the dial to a shaft so as to be unstable and to be prevented from slipping off. Consequently, it is possible to reduce the number of components and a cost.
Abstract:
Provided is a resin powder including first particles containing a polyolefin-based resin, wherein surfaces of the first particles are coated with second particles at an average coating ratio of 0.15 or greater, where the average coating ratio is measured with a Material Development Kit (MDK) at a temperature lower than a melting point of the resin powder for producing a three-dimensional object by 15 degrees C.
Abstract:
A toner set, including: a transparent toner including a binder resin a, a releasing agent a and no colorant; and one or more color toners, each including a binder resin b, a colorant b and a releasing agent b, wherein the binder resin a includes a non-crystalline resin α and a crystalline resin α, the binder resin b includes a non-crystalline resin β and a crystalline resin β, the releasing agent a has an average particle diameter as a long diameter of 0.2 μm to 2.0 μm, and there is a relationship of 1
Abstract:
A toner, including: a binder resin; releasing agent-encapsulating capsules; and a colorant, wherein the releasing agent-encapsulating capsules each include: a capsule formed of a resin (I) which is different from the binder resin; and a releasing agent (RA) which is encapsulated in the capsule, and the releasing agent-encapsulating capsules exist in the binder resin, and wherein 50% to 100% of the releasing agent-encapsulating capsules exist in a region from a surface of the toner to a depth of 0.10 times a volume-average particle diameter of the toner.
Abstract:
A toner, containing: toner base particles; and an external additive, the toner base particles each including a binder resin and a releasing agent, wherein the external additive includes non-spherical coalesced particles in each of which primary particles are coalesced together, and wherein the coalesced particles satisfy the following formula (1): Nx/1,000×100≦30% where Nx is a number of the primary particles present alone relative to 1,000 of the coalesced particles, as observed under a scanning electron microscope after stirring 0.5 g of the coalesced particles and 49.5 g of a carrier placed in a 50 mL bottle for 10 minutes by means of a mixing and stirring device at 67 Hz.