Abstract:
A color original reading apparatus includes a focusing lens which receives a light beam containing image information and reflecting from an original document to be read and outputs a convergent light beam toward a first line image sensor. A first color separating lens is disposed in front of the first image sensor so that only a first predetermined color component of the light beam is allowed to impinge on the first image sensor. A reflecting mirror having a reflecting surface at its forward side surface and a knife edge at its forward end surface is disposed to reflect part of the convergent light beam toward a second line image sensor. The reflecting mirror is disposed not to cross the optical axis of the convergent light beam. In addition, the angle defined by the knife edge is set to be smaller than the angle defined between the reflecting surface and the optical axis. A second color separating filter is disposed in front of the second image sensor so that only a predetermined second color component of said reflected part of said convergent light beam is allowed to reach the second image sensor.
Abstract:
An image forming apparatus includes an image forming mechanism, an image bearing member, a transfer member, a transfer member mount, and an image detector. The image forming mechanism forms a first image and a second image on a surface of the image bearing member. The transfer member is disposed facing the image bearing member and contactable thereagainst to form a transfer nip at which the first image is transferred from the image bearing member to a recording medium. The transfer member mount on which the transfer member is disposed accommodates multiple different sizes of transfer member. The image detector detects the second image on the surface of the image bearing member. The image forming apparatus includes a plurality of interchangeable transfer members, only one of which at any given time faces the image bearing member, and a transfer member switching device to switch between the plurality of transfer members.
Abstract:
A cleaning device is used in an image forming apparatus to remove residual attachments including toner and paper powders from a surface of a movable intermediate transfer element onto which toner images are transferred from an image carrier. The cleaning device includes a cleaning brush that contacts the surface of the intermediate transfer element to apply a bias having a predetermined polarity to the toner adhered onto the surface of the intermediate transfer element so as to make uniform a polarity of the toner. The cleaning device further includes a pressing member that contacts the surface of the intermediate transfer element with a predetermined pressure. The pressing member is disposed at a position upstream of the cleaning brush in a direction of movement of the intermediate transfer element.
Abstract:
A sampling head having an input to which a sampling signal is applied, a diode bridge to which the sampling signal is applied, and a strobe pulse generator for controlling the gage time of the diode bridge; wherein the strobe pulse generator comprises a resonance tunnel barrier diode, whereby high speed measurement and miniaturization are attained.
Abstract:
A dot matrix impact printer for color printing comprising a platen and a print wire. The platen comprises a plurality of members made of porous material containing different colors. The print wire and platen member are driven to a position adjacent each other and the print wire is moved to force a paper to the platen, so that a dot is printed on the paper with color ink contained in the corresponding member of the platen.
Abstract:
An image forming apparatus includes a rotatable image bearer, a transfer member, a cleaning member, a light irradiator, and a light transmissive member. The transfer member forms a transfer position at which a visible image on a surface of the image bearer is transferred to a recording medium conveyed through a conveyance path. The cleaning member forms a cleaning position at which a substance adhering to the surface of the image bearer after transfer is cleaned. The light irradiator is disposed at a back face side of the recording medium opposite a side at which the surface of the image bearer is disposed relative to the conveyance path. The light irradiator is configured to emit light onto the surface of the image bearer. The light is targeted between the transfer position and the cleaning position. The light transmissive member is disposed between the light irradiator and the image bearer.
Abstract:
An image forming apparatus which utilizes an intermediate transfer member. Plural toner images, for example of different colors, can be superimposed on the intermediate transfer member, and then can be transferred to a paper sheet. A discharging device is provided for discharging a charge applied to the intermediate transfer member. Further, a value of a voltage provided by this discharging device and/or a voltage provided for a transfer bias is proportional to an actual surface potential on the intermediate transfer member, which is proportional to the number of times toner images have been formed on the intermediate transfer member prior to transfer to the paper sheet. For example, if a full color toner image is formed on the intermediate transfer member, which may result from four operations of transferring individual toner images onto the intermediate transfer member, a voltage provided by the discharger and/or by a transfer bias device will be higher than that if only a monocolor image has been formed on the intermediate transfer member. Further, the image forming apparatus can be operable to form images on thicker paper, and in this instance a drive speed of devices in the image forming apparatus can be reduced, and a voltage applied to a pre-charger can also accordingly be reduced. The image forming apparatus can also include a cleaning device from the intermediate transfer belt, and the functions of both the intermediate transfer member discharging device and a cleaning device can be combined in one brush roller.
Abstract:
An image forming apparatus includes a transfer device to transfer an image on an image carrier to a transfer sheet. The transfer device includes a transfer roller and transfers an image on the image carrier to a transfer sheet conveyed into a transfer area between the transfer roller and the image carrier by applying a bias voltage to the transfer roller. The transfer device includes a device to apply a release agent for an alien substance to a surface of the transfer roller. Toner and an alien substance, such as paper dust, thereby hardly adheres to the release agent applied on the surface of the transfer roller. Even if toner and/or an alien substance are put on the release agent applied on the surface of the transfer roller, such toner and/or an alien substance are easily removed by a cleaning device. Thus, lowering of an image quality due to insufficient cleaning of the transfer roller is avoided.
Abstract:
Electric heating means is arranged in the bottom portion of one case body, and an air bath tank and a sample heating tank, communicating with each other, are formed within this case body. The temperature of air in the air bath tank is maintained at a predetermined level by a temperature detecting element and a temperature controlling device. A filter paper is held in the air bath tank by supporting means at a position above the heating means spaced by a predetermined distance from the heating means. A heavy oil sample heated at a predetermined temperature for a predetermined time in the sample heating tank is dropped on the filter paper and the filter paper is dried for a predetermined time. The stability of the heavy oil is evaluated based on the state of spreading of the dropped heavy oil on the filter paper.
Abstract:
A process for preparing a solid catalyst for the polymerization of olefins which comprises the steps of (1) reducing titanium tetrachloride with an organoaluminum compound, (2) treating the resulting .beta.-type titanium trichloride with a complexing agent, (3) treating the solid catalyst thus obtained with an organoaluminum compound, and (4) treating the resulting solid catalyst with a complexing agent, and a solid catalyst for the polymerization of olefins prepared by the above process.