Abstract:
A piezoelectric valve, having superior responsiveness during valve opening and capability to stabilize gas supply at an early stage, includes a gas pressure chamber receiving compressed gas and an exhaust path discharging the compressed gas from the gas pressure chamber; a valve disc placed in the gas pressure chamber to open and close the exhaust path; a piezoelectric element generating a driving force for operation of the valve disc, as a displacement; a displacement magnifying mechanism magnifying the displacement of the piezoelectric element and applying the magnified displacement to the valve disc; and driving means including a signal generator generating a signal including a first prepulse, a second prepulse, and a main pulse, applies a drive voltage to the piezoelectric element using the signal generated by the signal generator, as an input signal to a drive circuit, and drives and opens the valve disc by expanding the piezoelectric element.
Abstract:
Provided is a piezoelectric valve in which the valve is opened/closed utilizing a displacement of a laminated piezoelectric element, including: a valve main body having a gas pressure chamber that receives compressed gas supplied externally; and an actuator having a valving element, the laminated piezoelectric element that generates a driving force required for operating the valving element as the displacement, and a displacement enlarging mechanism that enlarges the displacement of the laminated piezoelectric element to be acted on the valving element, the actuator being disposed in the valve main body, in which a surface of the laminated piezoelectric element is coated with silicone in a state in which the laminated piezoelectric element is integrated into the actuator.
Abstract:
A piezoelectric valve stably supplies gas even for a long gas ejection time, with a high responsivity to opening the valve, is provided. The piezoelectric valve, including a gas-pressure-chamber for receiving a compressed gas supplied from outside, a gas-discharge-channel through which the compressed gas is discharged from the gas-pressure-chamber, comprises: a valve body disposed in the gas-pressure-chamber and opens/closes the gas-discharge-channel; a piezoelectric element for producing a driving force to move the valve body as a displacement; a displacement-enlarging-mechanism for enlarging the displacement of the piezoelectric element to act on the valve body; and a driving unit having a signal-generating-unit for generating a signal comprising a pre-pulse and a main pulse and provides the signal generated by the signal-generating-unit to a driving circuit as an input signal to apply a driving voltage to the piezoelectric element to make the piezoelectric element expand and drive the valve body open.
Abstract:
A piezoelectric valve stably supplies gas even for a long gas ejection time, with a high responsivity to opening the valve, is provided. The piezoelectric valve, including a gas-pressure-chamber for receiving a compressed gas supplied from outside, a gas-discharge-channel through which the compressed gas is discharged from the gas-pressure-chamber, comprises: a valve body disposed in the gas-pressure-chamber and opens/closes the gas-discharge-channel; a piezoelectric element for producing a driving force to move the valve body as a displacement; a displacement-enlarging-mechanism for enlarging the displacement of the piezoelectric element to act on the valve body; and a driving unit having a signal-generating-unit for generating a signal comprising a pre-pulse and a main pulse and provides the signal generated by the signal-generating-unit to a driving circuit as an input signal to apply a driving voltage to the piezoelectric element to make the piezoelectric element expand and drive the valve body open.
Abstract:
Provided is a piezoelectric actuator that can reduce a risk of air leakage due to weakening of pressing force of a valve element against a valve seat surface and airtightness. The piezoelectric actuator is used for a piezoelectric valve that opens and closes a valve utilizing displacement of a laminated piezoelectric element. The piezoelectric actuator includes: a valve element; a laminated piezoelectric element that generates a driving force, required for operation of the valve element, as a displacement; and a displacement enlargement mechanism that enlarges a displacement of a laminated piezoelectric element and causes the enlarged displacement to act on the valve element. In the piezoelectric actuator, a surface of the valve element to be in contact with a valve seat of the piezoelectric valve is made flat and smooth in a state in which a tensile load is applied to the laminated piezoelectric element.
Abstract:
A piezoelectric valve includes: a valve main part including a gas pressure chamber receiving compressed gas supplied from outside; a plate inside the valve main part, and an actuator fixed to the plate and inside the valve main part, which is a case with an opening on a front surface. The plate includes a gas discharge path and a valve seat coming into contact with a valve element of the actuator opening and closing the gas discharge path. A lid member that closes the opening of the case has a gas discharge opening communicating with the gas discharge path of the plate; is welded and fixed to a front surface of the plate, where the gas discharge path opens, on an annular welded part surrounding the gas discharge opening; and is welded and fixed to an end surface of the case on an annular welded part on the outer peripheral part.
Abstract:
A protruding section formed at the one side end of a connector section provided in a valve is inserted into a recessed section formed as part of a valve placement section of a fluid apparatus. The valve is caused to pivot with the inserted portion that serves as a supporting point, and an engaging section formed at the front end of a lever of a hook section formed at the other side end of the connector section is allowed to engage with an engaging protruding section formed as part of the valve placement section of the fluid apparatus. The valve is thus attached to the fluid apparatus.
Abstract:
A protruding section formed at the one side end of a connector section provided in a valve is inserted into a recessed section formed as part of a valve placement section of a fluid apparatus. The valve is caused to pivot with the inserted portion that serves as a supporting point, and an engaging section formed at the front end of a lever of a hook section formed at the other side end of the connector section is allowed to engage with an engaging protruding section formed as part of the valve placement section of the fluid apparatus. The valve is thus attached to the fluid apparatus.
Abstract:
An optical sorter includes a first light source disposed on a first side, a second light source disposed on a second side, an optical sensor configured to detect light during a plurality of scan periods including a first scan period and a second scan period, a determination part configured to determine a foreign object and/or a defective product, and a light source control part. The light source control part is configured to control the first light source and the second light source during the first scan period so as to turn on the first light source and/or the second light source in a first lighting pattern, which is a lighting pattern arbitrarily selected from a lighting pattern in which the first light source and the second light source are at least partially on, a lighting pattern in which only one of the first light source and the second light source is at least partially on, and a lighting pattern in which only the other of the first light source and the second light source is at least partially on, and is also configured to control the first light source and the second light source during the second scan period so as to turn on the first light source and/or the second light source in a second lighting pattern, which is a lighting pattern selected arbitrarily except for the first lighting pattern.
Abstract:
An optical sorter includes a light source configured to irradiate a sorting target in transit on a conveyance route with light, an optical sensor configured to detect light emitted from the light source and associated with the sorting target, a determination portion configured to determine whether the sorting target is a foreign object and/or a defective product based on a signal acquired by the optical sensor with respect to the light associated with the sorting target, and at least one intermediate member disposed at a position located between the light source and the conveyance route in a direction in which the sorting target is irradiated with the light from the light source and located in such a manner that the intermediate member does not affect the detection of the light associated with the sorting target. The at least one intermediate member includes a reflection region on which the light emitted from the light source is reflected. The optical sensor is further configured to detect the light emitted from the light source and reflected on the reflection region.