Abstract:
Disclosed is a mobile robot charge station return system, which may return a mobile robot to a charge station exactly and rapidly according to a charge station position guidance signal emitted from the charge station. The mobile robot charge station return system includes a charge station for transmitting charge station position guidance signals to different areas in such a way that different emitting distances of the charge station position guidance signals change according to a predetermined time period; and a mobile robot for receiving the charge station position guidance signals, calculating direction and distance information, and returning to the charge station according to the calculated direction and distance information.
Abstract:
A system is provided for returning a robot to a charger. In this regard, a charger is configured to provide a plurality of docking guide regions by outputting at least one guide signal superposed with at least one other signal to form a return region. Further, the robot is configured to return to the charger at a return speed by detecting the return region.
Abstract:
A semiconductor memory device having an open bitline memory structure from which an edge dummy memory block is removed, the semiconductor memory device includes a memory block, an edge sense amplification block including a first sense amplifier having a first bitline, a first complementary bitline, and a first amplification circuit comprising a first transistor having a first size, a central sense amplification block including a second sense amplifier having a second bitline, a second complementary bitline, and a second amplification circuit comprising a second transistor having a second size different from the first size, a capacitor block electrically connected to the edge sense amplification block.
Abstract:
A semiconductor memory device having an open bitline memory structure from which an edge dummy memory block is removed, the semiconductor memory device includes a memory block, an edge sense amplification block including a first sense amplifier having a first bitline, a first complementary bitline, and a first amplification circuit comprising a first transistor having a first size, a central sense amplification block including a second sense amplifier having a second bitline, a second complementary bitline, and a second amplification circuit comprising a second transistor having a second size different from the first size, a capacitor block electrically connected to the edge sense amplification block.
Abstract:
A block-based image denoising method includes determining similarities between a current block and reference blocks within a search range around the current block, from among certain-sized blocks divided from an input image; determining weights of the reference blocks with respect to the current block based on the similarities; and generating resultant blocks by denoising the current block with respect to every block of the input image based on the weights of the reference blocks.