Abstract:
A composite positive electrode active material includes: a first metal oxide that has a layered structure and is represented by Formula 1; and a second metal oxide that has a spinel structure and is represented by Formula 2, wherein the composite positive electrode active material includes a composite of the first metal oxide and the second metal oxide: LiMO2 Formula 1 LiMe2O4 Formula 2 wherein, in Formulas 1 and 2, M and Me are each independently at least one element selected from Groups 2 to 14 of the periodic table, and a molar ratio of Li/(M+Me) in the composite is less than 1.
Abstract:
An electrode active material includes: a core active material having a layered structure and capable of reversibly incorporating and deincorporating lithium; a dopant including boron and a first metal element, wherein the dopant is in the core active material; and a nanostructure disposed on a surface of the core active material and including a metal borate compound including a second metal element, wherein the second metal element is the same as the first metal element.
Abstract:
A composite cathode active material including: a first metal oxide having a layered crystal structure; and a second metal oxide having a perovskite crystal structure, wherein the second metal oxide includes a first metal and a second metal that are each 12-fold cubooctahedrally coordinated to oxygen. Also a cathode including the composite cathode material and a lithium battery containing the cathode.
Abstract:
A positive active material includes an overlithiated lithium transition metal oxide including: a metal cation and a Li2MO3 phase, wherein M is at least one metal selected from a Period 4 transition metal having an average oxidation number of +4 and a Period 5 transition metal having an average oxidation number of +4, and wherein an amount of the Li2MO3 phase is less than or equal to about 20 mole percent, based on 1 mole of the overlithiated lithium transition metal oxide.
Abstract:
A cathode active material including a layered lithium metal composite oxide including a first lithium metal oxide and a second lithium metal oxide having different crystal structures, and a third lithium metal oxide which is incapable of intercalating and deintercalating lithium in a charge and discharge voltage range of about 2.0 volts to about 4.7 volts versus lithium Li/Li+. Also, a cathode and a lithium battery including the cathode active material, and a method of preparing the cathode active material.
Abstract translation:包括具有不同结晶结构的第一锂金属氧化物和第二锂金属氧化物的层状锂金属复合氧化物的正极活性物质和不能在充放电电压范围内插入和脱嵌锂的第三锂金属氧化物 对于Li / Li +相对于约2.0伏至约4.7伏。 另外,包括正极活性物质的阴极和锂电池,以及制备正极活性物质的方法。
Abstract:
A positive active material including: a core including an overlithiated lithium transition metal oxide, and a coating layer which is disposed on at least a portion of a surface of the core, the coating layer including a polymer having an oxidation potential of about 4.4 volts to about 4.7 volts versus lithium metal. Also a manufacturing method thereof, and a positive electrode and a lithium battery including the positive active material.
Abstract:
A positive active material includes an overlithiated lithium transition metal oxide including: a metal cation and a Li2MO3 phase, wherein M is at least one metal selected from a Period 4 transition metal having an average oxidation number of +4 and a Period 5 transition metal having an average oxidation number of +4, and wherein an amount of the Li2MO3 phase is less than or equal to about 20 mole percent, based on 1 mole of the overlithiated lithium transition metal oxide.
Abstract:
A composite cathode active material includes: a first metal oxide including a plurality of layered crystalline phases comprising a first layered crystalline phase and a second layered crystalline phase, wherein the first and second layered crystalline phases have a different compositions than each other, and a second metal oxide different from the first metal oxide and including a composite crystalline phase, that is different from the first metal oxide, wherein the second metal oxide is represented by Formula 1, wherein at least a portion of the second metal oxide is disposed on a first layered crystalline phase of the plurality of layered crystalline phases of the first metal oxide, and wherein the first layer crystalline phase is in a space group of R-3m: LixMyOz Formula 1 wherein, in Formula 1, 0≦x≦3, 1≦y≦3, and 2≦z≦8, and M is at least one selected from a Group 4 element to a Group 13 element.
Abstract:
A composite positive electrode active material includes: a first metal oxide that has a layered structure and is represented by Formula 1; and a second metal oxide that has a spinel structure and is represented by Formula 2, wherein the composite positive electrode active material includes a composite of the first metal oxide and the second metal oxide: LiMO2 Formula 1 LiMe2O4 Formula 2 wherein, in Formulas 1 and 2, M and Me are each independently at least one element selected from Groups 2 to 14 of the periodic table, and a molar ratio of Li/(M+Me) in the composite is less than 1.
Abstract:
A composite positive electrode active material including: an overlithiated layered oxide (OLO) including vanadium (V) and magnesium (Mg), wherein the vanadium and magnesium have a molar ratio of about 1:2. Also a method of manufacturing the composite positive electrode active material, a positive electrode including the composite positive electrode, and a lithium battery including the positive electrode.