Abstract:
A holographic display device includes a light source configured to emit light, the light including first light of a first wavelength, second light of a second wavelength, and third light of a third wavelength; a spatial light modulator configured to form a holographic pattern to modulate the light emitted from the light source and to produce a holographic image; and a focusing optical system configured to focus the holographic image. The focusing optical system includes a fixed-focus optical system having a fixed focal length, and a variable focus optical system having a focal length that is changed by electrical control. The fixed-focus optical system is configured to focus the first light of the first wavelength, the second light of the second wavelength, and the third light of the third wavelength on different positions, respectively, on an optical axis to cancel a chromatic aberration by the variable focus optical system.
Abstract:
A geometric phase optical element and a three-dimensional display apparatus including the same are provided. The geometric phase optical element includes: a liquid crystal layer; a first electrode on a surface of the liquid crystal layer; and a second electrode on another surface of the liquid crystal layer, wherein, when no voltage is applied to the first and second electrodes, the liquid crystal layer is configured such that a phase difference according to an arrangement of the liquid crystal is π and light transmitted through the liquid crystal layer is diffracted by a first deflection angle, and when a first voltage that causes the phase difference according to the arrangement of the liquid crystal to become π/2 is applied to the first and second electrodes, the liquid crystal layer is configured such that the light transmitted through the liquid crystal layer is diffracted by a second deflection angle.
Abstract:
Provided are a Fourier-beam shaper and a display apparatus including the Fourier-beam shaper. The Fourier-beam shaper includes: a waveguide; an input coupler configured to direct a plurality of light beams toward the waveguide in a time-sequential manner; and a spatial converter configured to output the plurality of light beams traveling in the waveguide through spatially different regions of the spatial converter.
Abstract:
A geometric phase optical element and a three-dimensional display apparatus including the same are provided. The geometric phase optical element includes: a liquid crystal layer; a first electrode on a surface of the liquid crystal layer; and a second electrode on another surface of the liquid crystal layer, wherein, when no voltage is applied to the first and second electrodes, the liquid crystal layer is configured such that a phase difference according to an arrangement of the liquid crystal is π and light transmitted through the liquid crystal layer is diffracted by a first deflection angle, and when a first voltage that causes the phase difference according to the arrangement of the liquid crystal to become π/2 is applied to the first and second electrodes, the liquid crystal layer is configured such that the light transmitted through the liquid crystal layer is diffracted by a second deflection angle.
Abstract:
A backlight unit for a binocular-holographic display device and a holographic display device including the same are provided. The backlight unit includes a light source unit which outputs light, a first beam expansion unit which expands, in a first direction, the light output from the light source unit, a second beam expansion unit which expands, in a second direction perpendicular to the first direction, the light output from the first beam expansion unit, and a beam deflection unit which diffracts light incident on the first beam expansion unit. The holographic display device includes the backlight unit, a field lens, and a spatial light modulator.
Abstract:
Provided are a Fourier-beam shaper and a display apparatus including the Fourier-beam shaper. The Fourier-beam shaper includes: a waveguide; an input coupler configured to direct a plurality of light beams toward the waveguide in a time-sequential manner; and a spatial converter configured to output the plurality of light beams traveling in the waveguide through spatially different regions of the spatial converter.
Abstract:
A radiation detector includes: a radiation detecting module including a photoconductive layer containing at least one heavy metal; a voltage controller configured to detect current flowing through the photoconductive layer and control application of a voltage to the photoconductive layer based on the detected current; and a sealing part configured to seal the photoconductive layer and surround a portion of the radiation detecting module.
Abstract:
A method of removing residual charge from a photoconductive material includes applying a first voltage to the photoconductive material to form an electrostatic field during a collection operation in which x-rays are irradiated onto the photoconductive material; and applying a second voltage to the photoconductor to reduce an amount of residual charge therein during a removal operation, the second voltage being different from the first voltage. In one or more example embodiments, the photoconductive material may include Mercury Iodine (Hgl2).
Abstract:
A touch panel includes a sensing unit having a first sub sensing unit configured to output a first sensing current in response to a voltage of a first gate line and configured to reset in response to a voltage of a second gate line the first sensing current corresponding to a first touch type, and a second sub sensing unit configured to output a second sensing current in response to a voltage of a third gate line and configured to reset in response to a voltage of a fourth gate line, the second sensing current corresponding to a second touch type which is different than the first touch type, a display unit configured to generate an image voltage corresponding to image data to be displayed, in response to at least one of the voltages of the first to fourth gate lines and liquid crystal.
Abstract:
A silicon photomultiplier detector cell may include a photodiode region and a readout circuit region formed on a same substrate. The photodiode region may include a first semiconductor layer exposed on a surface of the silicon photomultiplier detector cell and doped with first type impurities; a second semiconductor layer doped with second type impurities; and/or a first epitaxial layer between the first semiconductor layer and the second semiconductor layer. The first epitaxial layer may contact the first semiconductor layer and the second semiconductor layer. The first epitaxial layer may be doped with the first type impurities at a concentration lower than a concentration of the first type impurities of the first semiconductor layer.