Abstract:
A memory system includes a semiconductor memory device and a memory controller. The semiconductor memory device includes a plurality of dynamic memory cells. The memory controller controls the semiconductor memory device. The memory controller applies an auto-refresh command to the semiconductor memory device at each refresh interval of the semiconductor memory device such that the semiconductor memory performs a refresh operation in a normal mode, and does not apply the auto-refresh command to the semiconductor memory device during a self-refresh interval in which the semiconductor memory performs a self-refresh operation. After the semiconductor memory device exits from the self-refresh interval, the memory controller adjusts an application of the auto-refresh command in the normal mode by reflecting information of the self-refresh interval.
Abstract:
An apparatus and method for providing an LTE service in an electronic device. The method includes: transmitting or receiving a voice signal through a first antenna and a data signal through a second antenna when the electronic device provides a multi-communication service. At least one switch connects at least one antenna and at least one communication interface with each other. When the electronic device provides a single communication service, transmitting or receiving a data signal or a voice signal through the first antenna, using the at least one switch.
Abstract:
A memory system includes a memory controller and a memory. The memory controller selectively operates in a first mode and a second mode. In the first mode, the memory controller transmits a first command continuously during a plurality of clock cycles. In the second mode, the memory controller to mix a second command with the first command and transmit the mixture of the first command and the second command. The memory changes command latch timing depending on the first or second mode.
Abstract:
A memory system includes a memory controller and a memory. The memory controller selectively operates in a first mode and a second mode. In the first mode, the memory controller transmits a first command continuously during a plurality of clock cycles. In the second mode, the memory controller to mix a second command with the first command and transmit the mixture of the first command and the second command. The memory changes command latch timing depending on the first or second mode.
Abstract:
A method of training a memory device included in a memory system is provided. The method includes testing memory core parameters for a memory core of the memory device during a booting-up sequence of the memory system; determining trimmed memory core parameters based on the test results; storing the determined trimmed memory core parameters; and applying the trimmed memory core parameter to the memory device during a normal operation of the memory device.
Abstract:
A memory device includes a memory bank including a plurality of memory blocks, a row selection circuit and a refresh controller. The row selection circuit is configured to perform an access operation and a refresh operation with respect to the memory bank. The refresh controller is configured to control the row selection circuit such that the memory device is operated selectively in an access mode or a self-refresh mode in response to a self-refresh command received from a memory controller, the refresh operation is performed in the access mode in response to an active command received from the memory controller and the refresh operation is performed in the self-refresh mode in response to at least one clock signal.
Abstract:
A memory system, including a memory controller and a memory, wherein the memory controller selectively operates in a first mode and a second mode. In the first mode, the memory controller transmits a first command continuously during a plurality of clock cycles. In the second mode, the memory controller mixes a second command with the first command and transmits the mixture of the first command and the second command. The memory changes command latch timing depends on the first or second mode.
Abstract:
A memory system includes a memory controller and a memory. The memory controller selectively operates in a first mode and a second mode. In the first mode, the memory controller transmits a first command continuously during a plurality of clock cycles. In the second mode, the memory controller to mix a second command with the first command and transmit the mixture of the first command and the second command. The memory changes command latch timing depending on the first or second mode.
Abstract:
A memory device and system supporting command bus training are provided. An operating method of the memory device includes entering into a command bus training mode, receiving a clock signal, a chip selection signal and a first command/address signal, generating an internal clock signal by dividing the clock signal, generating a second command/address signal by latching the first command/address signal at a rising edge or a falling edge of the internal clock signal when a chip selection signal is activated, and outputting the second command/address signal.
Abstract:
A memory system includes a memory controller and a memory. The memory controller selectively operates in a first mode and a second mode. In the first mode, the memory controller transmits a first command continuously during a plurality of clock cycles. In the second mode, the memory controller to mix a second command with the first command and transmit the mixture of the first command and the second command. The memory changes command latch timing depending on the first or second mode.