Abstract:
An apparatus and method for providing a 3D stereoscopic image is provided. The apparatus may provide a 3D stereoscopic image generated based on two projection images imaged at different positions.
Abstract:
Provided is an apparatus and method for generating a virtual view in an image reconstruction system which uses multiple views. In the image reconstruction system which uses multiple views, the virtual view generating apparatus may receive original view projection images that are generated by emitting X rays toward an object via original views, three-dimensionally reconstruct the object by using the original view projection images, generate original view reprojection images by virtually emitting X-rays toward the reconstructed 3D object via the original views, estimate a motion of the reconstructed 3D object with respect to at least two of the original view reprojection images using a block-based motion estimation scheme, and generate an intermediate view projection image with respect to the at least two of the original view reprojection images by using information relating to the estimated motion.
Abstract:
An X-ray imaging apparatus includes an X-ray generator configured to transmit X-rays to an object, an X-ray detector configured to detect the X-rays transmitted through the object and convert the detected X-rays into electrical signals, a gantry in which the X-ray generator and the X-ray detector are installed so as to be opposite to each other, the gantry being rotatable about a bore, a controller configured to control a rotation of the gantry during bio-signal cycles of the object so that the gantry is rotated from different start positions whenever one of the bio-signal cycles is started, and an image processor configured to generate a 4D image of the object by applying a prior image-based compressed sensing image reconstruction algorithm to plural 2D projection images acquired from the electrical signals generated by converting the X-rays detected during the rotation of the gantry.
Abstract:
An imaging method includes calculating a derivative back projection (DBP) result value using a DBP method with respect to a projection image of a field of view (FOV) inside an object, and reconstructing an image of the FOV by applying a regulation function to the FOV while reconstructing the image of the FOV using the DBP result value.
Abstract:
Disclosed is an X-ray imaging apparatus, which includes a plurality of X-ray generation modules configured to emit X-rays to a subject, the X-ray generation modules being configured to move independently of one another, an X-ray detector configured to detect a plurality of X-rays emitted from the plurality of X-ray generation modules and which have passed through the subject, and an image processor configured to acquire a plurality of X-ray images from the plurality of detected X-rays.
Abstract:
An image reconstruction system, apparatus, and method employing a non-sequential scanning scheme using real-time feedback are provided. A projection information generating unit is configured to generate at least one piece of projection information by the X-ray irradiated to the object in the at least one viewpoint. A projection information comparing unit is configured to compare predicted intermediate projection information with measured intermediate projection information from the generated projection information. The predicted intermediate projection information is predicted from pieces of projection information generated from different viewpoints, and the measured intermediate projection information is measured in an intermediate viewpoint corresponding to the predicted intermediate projection information. A determining unit is configured to determine whether to irradiate the X-ray to the object in an additional viewpoint. An image reconstructing unit is configured to reconstruct the generated projection information, and to acquire an image representing the object.
Abstract:
Provided are a method and apparatus for interpolating X-ray tomographic image data by using a machine learning model. A method of interpolating an X-ray tomographic image or X-ray tomographic composite image data includes obtaining a trained model parameter via machine learning that uses a sub-sampled sinogram for learning as an input and uses a full-sampled sinogram for learning as a ground truth; radiating X-rays onto an object at a plurality of preset angular locations via an X-ray source, and obtaining a sparsely-sampled sinogram including X-ray projection data obtained via X-rays detected at the plurality of preset angular locations; applying the trained model parameter to the sparsely-sampled sinogram by using the machine learning model; and generating a densely-sampled sinogram by estimating X-ray projection data not obtained with respect to the object on the sparsely-sampled sinogram.
Abstract:
Disclosed herein are an X-ray imaging apparatus for optimizing radiography conditions upon radiography, and a control method thereof. The X-ray imaging apparatus includes: an input device configured to receive information about a patient; and a controller configured to conduct a search for a previously obtained X-ray image related to the information about the patient and a previously set radiography condition related to the information about the patient, and to set a radiography condition for a main-shot based on a result of the search.
Abstract:
The X-ray imaging apparatus includes an X-ray source that emits X-rays to an object at different original-view positions, an X-ray detector that acquires original-view images by detecting X-rays having passed through the object, and an image controller that reconstructs a 3D volume image representation of the object from the original-view images and generates close-view images by virtually emitting X-rays to the 3D volume image representation of the object at a shorter distance than a distance between the X-ray source and the object.
Abstract:
An X-ray imaging apparatus includes an X-ray generator configured to generate and radiate X-rays to a subject, an X-ray detector configured to detect and convert X-rays transmitted through the subject into an image signal, and a controller configured to analyze the image signal of the subject and set gain of the X-ray detector according to detection regions.