Abstract:
An optical interconnection for a stacked integrated circuit, is provided. The optical interconnection includes: an optical transmission unit disposed in a first layer and an optical receiving unit disposed in a second layer, different from the first layer, and spaced apart from the optical transmission unit by a predetermined gap. The optical transmission unit includes a first optical antenna that outputs light; the optical receiving unit includes a second optical antenna which receives light transmitted from the optical transmission unit. At least one of the first and second optical antennas includes a plurality of nanostructures configured to transmit or receive an optical signal.
Abstract:
An image display device includes a display panel unit having a plurality of optical elements configured to generate and emit unidirectional lights in an array and a control unit configured to control the plurality of optical elements according to image information. The image display device is located very close to the eyes of a user and displays an additional information image added to a real image, thereby implementing augmented reality.
Abstract:
An optical modulator includes a dielectric layer and a metal layer arranged on the dielectric layer. In the optical modulator, a first light of a first frequency and a second light of a second frequency that are incident upon the metal layer exit from the metal layer at different refractive angles due to surface plasmon generation.
Abstract:
Provided are an optical device and a method of controlling propagation directions of light and a surface plasmon using the optical device. The optical device includes a light source, a substrate, and a metal layer that is disposed on the substrate, the metal layer includes at least two slots, and propagation directions of light and a surface plasmon may be controlled by using the light that is polarized in a direction parallel to a direction of a long length of any one of the at least two slots.
Abstract:
A nanostructure, an optical device including the nanostructure, and methods of manufacturing the nanostructure and the optical device. A method of manufacturing a nanostructure may include forming a block copolymer template layer and a precursor pattern of metal coupled to the block copolymer template layer on a graphene layer, and forming a metal nanopattern on the graphene layer by removing the block copolymer template layer and reducing the precursor pattern.