Abstract:
A pellicle including a water-soluble adhesive and a photomask assembly including the pellicle are provided. A pellicle may include a membrane, a pellicle frame, and a water-soluble adhesive disposed on the pellicle frame. The water-soluble adhesive may be prepared by a mixture including a water-soluble acrylic adhesive material in an amount of about 40% to about 55% by weight of the mixture, water or a solution of water and alcohol in an amount of about 40% to about 55% by weight of the mixture, and an additive in an amount of about 1% to about 5% by weight of the mixture.
Abstract:
Provided is a method of manufacturing a pellicle. The method includes preparing a substrate, forming a membrane on the substrate by performing a chemical vapor deposition (CVD) process, separating the membrane from the substrate in a first solvent, rinsing the separated membrane in a second solvent, and transferring the separated membrane to a frame in a third solvent.
Abstract:
A photomask and a method of forming the same, the photomask including a transparent substrate; a light shielding pattern on the transparent substrate, the light shielding pattern including molybdenum and silicon; and an etch stop layer covering at least a sidewall of the light shielding pattern, wherein the etch stop layer has an etch rate lower than an etch rate of the light shielding pattern with respect to an ammonia-based cleaning solution.
Abstract:
A pellicle for lithography processes, including extreme ultraviolet (EUV) lithography may mitigate thermal accumulation in a membrane of the pellicle. The pellicle includes a membrane and at least one thermal buffer layer on at least one surface of the membrane. An emissivity of the thermal buffer layer may be greater than an emissivity of the membrane. A carbon content of the thermal buffer layer may be greater than a carbon content of the membrane. Multiple thermal buffer layers may be on separate surfaces of the membrane, and the thermal buffer layers may have different properties. A capping layer may be on at least one thermal buffer layer, and the capping layer may include a hydrogen resistant material. A thermal buffer layer may extend over some or all of a surface of the membrane. A thermal buffer layer may be between at least two membranes.
Abstract:
A photomask and a method of forming the same, the photomask including a transparent substrate; a light shielding pattern on the transparent substrate, the light shielding pattern including molybdenum and silicon; and an etch stop layer covering at least a sidewall of the light shielding pattern, wherein the etch stop layer has an etch rate lower than an etch rate of the light shielding pattern with respect to an ammonia-based cleaning solution.
Abstract:
Provided is a mask. The mask may include a mask substrate, mask patterns on the mask substrate, frames disposed on an edge of the mask substrate outside the mask patterns, and a pellicle spaced apart from the mask patterns, the pellicle being disposed on the frames, wherein the pellicle includes protection layers each of which has a nanometer thickness.
Abstract:
Provided is a mask. The mask may include a mask substrate, mask patterns on the mask substrate, frames disposed on an edge of the mask substrate outside the mask patterns, and a pellicle spaced apart from the mask patterns, the pellicle being disposed on the frames, wherein the pellicle includes protection layers each of which has a nanometer thickness.