Abstract:
An artificial neural network (ANN) system includes a processor, a virtual overflow detection circuit and a data format controller. The processor performs node operations with respect to a plurality of nodes included in each layer of an ANN to obtain a plurality of result values of the node operations and performs a quantization operation on the obtained plurality of result values based on a k-th fixed-point format for a current quantization of the each layer to obtain a plurality of quantization values. The virtual overflow detection circuit generates a virtual overflow information indicating a distribution of valid bit numbers of the obtained plurality of quantization values. The data format controller determines a (k+1)-th fixed-point format for a next quantization of the each layer based on the generated virtual overflow information. An overflow and/or an underflow are prevented efficiently by controlling the fixed-point format using the virtual overflow.
Abstract:
An apparatus and method display an application in a wireless terminal. The application displaying apparatus and method are capable of simultaneously displaying a plurality of applications in a wireless terminal, with the apparatus including: a flexible display unit which has a screen divided in response to a folding action; and a controller for controlling the flexible display unit to divide the screen of the flexible display unit in response to the folding action for the flexible display unit and to display applications on the divided screens.
Abstract:
A communication device and a method of controlling the same. The communication device includes at least one receiver configured to connect to a first antenna for receiving a first signal and a second antenna for receiving a second signal; and a processor electrically coupled to the at least one receiver, wherein the processor is configured to measure received signal strengths of the first signal and the second signal based on calibration operation for the first antenna and the second antenna, select one of the first antenna and the second antenna based on the measured received signal strengths, and control the at least one receiver to receive a signal through the selected one of the first antenna and the second antenna.