Abstract:
A transparent display device including a polymer substrate having colored particles distributed therein, a pixel circuit on the polymer substrate, a first electrode electrically connected to the pixel circuit, a display layer on the first electrode, and a second electrode facing the first electrode and covering the display layer.
Abstract:
A transparent display substrate, a transparent display device, and a method of manufacturing a transparent display device, the substrate including a base substrate including a pixel area and a transmission area; a pixel circuit on the pixel area of the base substrate; an insulation layer covering the pixel circuit on the base substrate; a pixel electrode selectively disposed on the pixel area of the base substrate, the pixel electrode being electrically connected to the pixel circuit at least partially through the insulation layer; and a transmitting layer structure selectively disposed on the transmission area of the base substrate, the transmitting layer structure including at least an inorganic material, the inorganic material consisting essentially of silicon oxynitride.
Abstract:
A cover window of a flexible display device includes a base substrate including an out-folding area, an in-folding area, and peripheral areas disposed on opposing sides of at least one of the out-folding area and the in-folding area, a first hard coating layer at a top surface of the base substrate, the first hard coating layer having a substantially uniform thickness, and a second hard coating layer at a bottom surface of the base substrate opposite to the top surface, the second hard coating layer having a thickness different from the thickness of the first hard coating layer. A thickness of a first area of the second hard coating layer that overlaps with the out-folding area and the in-folding area of the base substrate is less than a thickness of a second area of the second hard coating layer that overlaps with the peripheral areas of the base substrate.
Abstract:
A mirror type display apparatus comprises a base substrate having a pixel region and a non-pixel region surrounding the pixel region, a driving device, a display device, a protective substrate and an island-shaped reflective layer disposed on a surface of the protective substrate. The island-shaped reflective layer including the island-shaped reflective layers separated by furrows formed on the protective substrate. The island-shaped reflective layer can minimize a warpage caused by a mismatch of coefficient of thermal expansion (CTE) between the protective substrate and the reflective layer.
Abstract:
A transparent display substrate, a transparent display device, and a method of manufacturing a transparent display device, the substrate including a base substrate including a pixel area and a transmission area; a pixel circuit on the pixel area of the base substrate; an insulation layer covering the pixel circuit on the base substrate; a pixel electrode selectively disposed on the pixel area of the base substrate, the pixel electrode being electrically connected to the pixel circuit at least partially through the insulation layer; and a transmitting layer structure selectively disposed on the transmission area of the base substrate, the transmitting layer structure including at least an inorganic material, the inorganic material consisting essentially of silicon oxynitride.
Abstract:
A transparent display substrate, a transparent display device, and a method of manufacturing a transparent display device, the substrate including a base substrate including a pixel area and a transmission area; a pixel circuit on the pixel area of the base substrate; an insulation layer covering the pixel circuit on the base substrate; a pixel electrode selectively disposed on the pixel area of the base substrate, the pixel electrode being electrically connected to the pixel circuit at least partially through the insulation layer; and a transmitting layer structure selectively disposed on the transmission area of the base substrate, the transmitting layer structure including at least an inorganic material, the inorganic material consisting essentially of silicon oxynitride.
Abstract:
A display device may include a first substrate, a lower barrier layer disposed on a rear surface of the first substrate, an upper barrier layer disposed on a front surface of the first substrate, a display structure disposed on the upper barrier layer, and a second substrate disposed on the display structure.
Abstract:
A transparent organic light emitting display device may include a transparent base substrate, a semiconductor device disposed on the transparent base substrate, a display structure electrically connected to the semiconductor device, and a protection layer including a blue dye disposed on the display structure. The protection layer may improve the transparency of the transparent base substrate by calibrating discoloration of the transparent base substrate. Thus, the transparent display device including the protection layer may ensure an enhanced transparency. Further, the transparent display device may have an enhanced mechanical strength and an increased heat resistance because of the transparent base substrate.