Abstract:
A haptic display device is disclosed. In one aspect, the device includes a plurality of scan lines disposed over a substrate and configured to transfer a scan signal and a plurality of data lines electrically insulated from the scan lines and configured to transfer a data signal, wherein the data lines cross the scan lines. The device also includes a plurality of haptic control lines electrically insulated from the scan lines or the data lines and configured to transfer a haptic signal and a thin film transistor electrically connected to the scan lines and the data lines, wherein the thin film transistor is formed in each of a plurality of pixels. The device further includes a first electrode electrically connected to the thin film transistor, a second electrode facing the first electrode and an optical adjustment member disposed between the first and second electrodes.
Abstract:
A device, such as a display device, including a plurality of vibration plates oscillating in response to one or more oscillation signals. While at least one of first vibration plates among the plurality of vibration plates are oscillating, effective oscillation does not occur in at least one of second vibration plates among the plurality of vibration plates.
Abstract:
A liquid crystal display device includes a first substrate, a first electrode on the first substrate, a second substrate facing the first substrate, a second electrode on the second substrate facing the first electrode, and a liquid crystal structure between the first electrode and the second electrode. The liquid crystal structure includes a polymer network and liquid crystal molecules. The liquid crystal display device operates in a transmissive mode when an electric field is not generated between the first and the second electrodes, and operates in a scattering mode when the electric field is generated between the first and the second electrodes.
Abstract:
A liquid crystal display device includes a first substrate, a first electrode on the first substrate, a second substrate facing the first substrate, a second electrode on the second substrate facing the first electrode, and a liquid crystal structure between the first electrode and the second electrode. The liquid crystal structure includes a polymer network and liquid crystal molecules. The liquid crystal display device operates in a transmissive mode when an electric field is not generated between the first and the second electrodes, and operates in a scattering mode when the electric field is generated between the first and the second electrodes.
Abstract:
A haptic display device is disclosed. In one aspect, the device includes a plurality of scan lines disposed over a substrate and configured to transfer a scan signal and a plurality of data lines electrically insulated from the scan lines and configured to transfer a data signal, wherein the data lines cross the scan lines. The device also includes a plurality of haptic control lines electrically insulated from the scan lines or the data lines and configured to transfer a haptic signal and a thin film transistor electrically connected to the scan lines and the data lines, wherein the thin film transistor is formed in each of a plurality of pixels. The device further includes a first electrode electrically connected to the thin film transistor, a second electrode facing the first electrode and an optical adjustment member disposed between the first and second electrodes.
Abstract:
A haptic display device is disclosed. In one aspect, the device includes a plurality of scan lines disposed over a substrate and configured to transfer a scan signal and a plurality of data lines electrically insulated from the scan lines and configured to transfer a data signal, wherein the data lines cross the scan lines. The device also includes a plurality of haptic control lines electrically insulated from the scan lines or the data lines and configured to transfer a haptic signal and a thin film transistor electrically connected to the scan lines and the data lines, wherein the thin film transistor is formed in each of a plurality of pixels. The device further includes a first electrode electrically connected to the thin film transistor, a second electrode facing the first electrode and an optical adjustment member disposed between the first and second electrodes.
Abstract:
A haptic display device is disclosed. In one aspect, the device includes a plurality of scan lines disposed over a substrate and configured to transfer a scan signal and a plurality of data lines electrically insulated from the scan lines and configured to transfer a data signal, wherein the data lines cross the scan lines. The device also includes a plurality of haptic control lines electrically insulated from the scan lines or the data lines and configured to transfer a haptic signal and a thin film transistor electrically connected to the scan lines and the data lines, wherein the thin film transistor is formed in each of a plurality of pixels. The device further includes a first electrode electrically connected to the thin film transistor, a second electrode facing the first electrode and an optical adjustment member disposed between the first and second electrodes.
Abstract:
Provided is a flexible display device including a display body having flexibility; an actuator for changing and driving the display body; and an initial shape forming substrate for maintaining an initial state of the display body before the display body is changed and driven. The flexible display device allows a user to exactly control a change state of the flexible display device by driving the actuator and to decrease power consumption for changing and driving the flexible display device. Thus, by using the flexible display device, user convenience can be improved and the flexible display device can be driven with low power consumption.