Abstract:
A display device and a method for correcting an image of the display device are disclosed. In one aspect, the display device includes a display panel including a plurality of pixel lines configured to be selected as at least one of data insertion lines and data deletion lines. The display device also includes an image corrector configured to receive input image data, select the data insertion lines and data deletion lines when the input image data represents an image including a static image block, insert second image data corresponding to the data insertion lines into the input image data, and delete first image data corresponding to the data deletion lines from the input image data so as to generate corrected image data including a shifted static image block.
Abstract:
A display device and a method for correcting an image of the display device are disclosed. In one aspect, the display device includes a display panel including a plurality of pixel lines configured to be selected as at least one of data insertion lines and data deletion lines. The display device also includes an image corrector configured to receive input image data, select the data insertion lines and data deletion lines when the input image data represents an image including a static image block, insert second image data corresponding to the data insertion lines into the input image data, and delete first image data corresponding to the data deletion lines from the input image data so as to generate corrected image data including a shifted static image block.
Abstract:
A method of driving an OLED display device includes receiving image data. A load value is determined for each sub-pixel. A first load value is set to a largest load value determined for each sub-pixel. A first correction factor is calculated that decreases as the first load value increases, when the first load value is greater than a first threshold. A second load value is calculated based on the image data and current contribution weights for the sub-pixels. A second correction factor is calculated that decreases as the second load value increases, when the second load value is greater than a second threshold. Either the first correction factor or the second correction factor is selected. The image data is converted into output image data based on the correction factor. An image corresponding to the output image data is displayed.
Abstract:
A display substrate includes a plurality of gate lines extending in a first direction and arranged in a second direction in a display area of the display substrate, an alignment film formed in the display area and in an end area adjacent to end portions of the gate lines in a peripheral area surrounding the display area, and a plurality of circuit stages formed in the end area to connect to the gate lines and a dummy stage connected to a last circuit stage of the circuit stages. Each of the circuit stages includes a gate driving circuit disposed at the higher portion the gate line corresponding to the circuit stages and a gate connecting line formed in the peripheral area between the display area and the gate driving circuit to connect each of the circuit stages with each of the gate lines.
Abstract:
A temperature estimating apparatus includes an average data outputting circuit configured to output average data of image data displayed on a display panel. The temperature estimating apparatus further includes a change amount outputting circuit configured to determine a change amount of the average data, and to output an average data change amount. The temperature estimating apparatus additionally includes a luminance outputting circuit configured to convert the average data change amount to a luminance, and to output the luminance. The temperature estimating apparatus further includes a temperature sensor configured to sense an ambient temperature of the display panel, and to output the ambient temperature. The temperature estimating apparatus additionally includes a current temperature outputting circuit configured to determine a current temperature of the display panel based on a previous temperature of the display panel, the luminance and the ambient temperature.
Abstract:
A luminance compensator in a display device includes a temperature sensor that detects a temperature of a display panel, a temperature estimator that calculates an estimated temperature of each of a plurality of pixel blocks based on an average luminance of each pixel block and the temperature of the display panel, a first weight calculator that detects a displacement of the display panel and calculates a first temperature compensation weight for first compensation pixel blocks of the pixel blocks, the first compensation pixel blocks being adjacent to an upper side of an image pattern area displayed on a portion of the display panel, and a temperature compensator that calculates temperature compensation data by applying the first temperature compensation weight to the estimated temperature to compensate the average luminance, and outputs the temperature compensation data.
Abstract:
A temperature estimating apparatus includes an average data outputting circuit configured to output average data of image data displayed on a display panel. The temperature estimating apparatus further includes a change amount outputting circuit configured to determine a change amount of the average data, and to output an average data change amount. The temperature estimating apparatus additionally includes a luminance outputting circuit configured to convert the average data change amount to a luminance, and to output the luminance. The temperature estimating apparatus further includes a temperature sensor configured to sense an ambient temperature of the display panel, and to output the ambient temperature. The temperature estimating apparatus additionally includes a current temperature outputting circuit configured to determine a current temperature of the display panel based on a previous temperature of the display panel, the luminance and the ambient temperature.
Abstract:
A luminance compensator in a display device includes a temperature sensor that detects a temperature of a display panel, a temperature estimator that calculates an estimated temperature of each of a plurality of pixel blocks based on an average luminance of each pixel block and the temperature of the display panel, a first weight calculator that detects a displacement of the display panel and calculates a first temperature compensation weight for first compensation pixel blocks of the pixel blocks, the first compensation pixel blocks being adjacent to an upper side of an image pattern area displayed on a portion of the display panel, and a temperature compensator that calculates temperature compensation data by applying the first temperature compensation weight to the estimated temperature to compensate the average luminance, and outputs the temperature compensation data.