Abstract:
An organic light-emitting display device includes a first substrate having transmitting regions and pixel regions separated from each other by the transmitting regions, a plurality of thin film transistors on the first substrate in the pixel regions, a passivation layer covering the plurality of thin film transistors, a plurality of pixel electrodes on the passivation layer and electrically connected to the thin film transistors, the pixel electrodes being in the pixel regions and overlapping the thin film transistors, an opposite electrode in the transmitting regions and the pixel regions, the opposite electrode facing the plurality of pixel electrodes and being configured to transmit light, an organic emission layer interposed between the pixel electrodes and the opposite electrode, and a color filter in corresponding pixel regions.
Abstract:
In an aspect, an organic light emitting diode device including a first electrode, a second electrode facing the first electrode, and an emission layer positioned between the first electrode and second electrode, wherein the first electrode includes samarium (Sm) is provided.
Abstract:
In an aspect, an organic light emitting diode device including a first electrode, a second electrode facing the first electrode, and an emission layer positioned between the first electrode and second electrode, wherein the first electrode includes samarium (Sm) is provided.
Abstract:
Provided is an organic light-emitting display apparatus that includes a substrate; a first electrode on the substrate; an intermediate layer on the first electrode and including an organic emission layer; and a second electrode that includes a first layer including a dipole material, a second layer including a material having a work function of 3.6 eV or less, and a third layer including a conductive material, wherein the first to third layers are sequentially disposed on the intermediate layer.
Abstract:
An organic light-emitting device with a plurality of subpixels, each subpixel including an emission region and a non-emission region, the organic light-emitting device including a substrate; an anode on the substrate, the anode including patterns that separately correspond to respective ones of the plurality of subpixels; an organic layer on the anode, the organic layer being common to the plurality of subpixels; and a cathode on the organic layer, the cathode including a plurality of subcathodes that each correspond to at least one of the subpixels and that allow light to pass through in emission regions, wherein adjacent two of the subcathodes overlap with each other in non-emission regions.
Abstract:
An organic light emitting diode includes a first electrode including a first electrode including a reflective metal layer formed of a light-reflective metal, an upper transparent conductive layer positioned on the reflective metal layer, and a protective layer positioned on the upper transparent conductive layer; an organic emission layer positioned on the first electrode; and a second electrode positioned on the organic emission layer, wherein the upper transparent conductive layer is amorphous.
Abstract:
An organic light emitting display is disclosed. In one embodiment, the display includes 1) a substrate, 2) a plurality of pixels formed on the substrate, wherein each of the pixels comprises at least one circuit region including i) a first light emission area, ii) a second light emission area iii) at least one transmission area transmitting external light, and iv) a pixel circuit unit and 3) a first pixel electrode formed in the first light emission area and electrically connected to the pixel circuit unit, wherein the first pixel electrode comprises a first transparent conductive layer and a reflective layer. The display may further include 1) a second pixel electrode formed in the second light emission area and electrically connected to the first pixel electrode, wherein the second pixel electrode comprises a second transparent conductive layer, 2) a first opposite electrode substantially directly below or above the first pixel electrode, 3) a second opposite electrode substantially directly below or above the second pixel electrode and 4) an organic emission layer formed between the first pixel electrode and the first opposite electrode and between the second pixel electrode and the second opposite electrode.
Abstract:
An organic light-emitting device including a first sub-pixel, a second sub-pixel, and a third sub-pixel on a substrate; a plurality of first electrodes in the first sub-pixel, the second sub-pixel, and the third sub-pixel, respectively; a second electrode being a sub-common layer to the first sub-pixel and the second sub-pixel and facing the first electrodes of the first sub-pixel and the second sub-pixel; and a third electrode in the third sub-pixel and facing the first electrode of the third sub-pixel is disclosed.
Abstract:
An organic light emitting diode device includes a first electrode, a second electrode opposite the first electrode, and an emission layer between the first and second electrodes. The first electrode includes a Ag—Mg alloy including a greater amount of Ag than Mg.
Abstract:
An organic light-emitting display device includes a first substrate having transmitting regions and pixel regions separated from each other by the transmitting regions, a plurality of thin film transistors on the first substrate in the pixel regions, a passivation layer covering the plurality of thin film transistors, a plurality of pixel electrodes on the passivation layer and electrically connected to the thin film transistors, the pixel electrodes being in the pixel regions and overlapping the thin film transistors, an opposite electrode in the transmitting regions and the pixel regions, the opposite electrode facing the plurality of pixel electrodes and being configured to transmit light, an organic emission layer interposed between the pixel electrodes and the opposite electrode, and a color filter in corresponding pixel regions.