Abstract:
An organic light emitting display (OLED) device that includes a first substrate and a second substrate. An organic light emitting element and a sealing member are formed between the first substrate and the second substrate. A touch panel, a block pattern, and a protective layer are formed on the second substrate. The block pattern is arranged above the sealing member to prevent a center of the sealing member from being excessively illuminated by a laser beam during a curing process.
Abstract:
Provided are a display apparatus and a method of manufacturing the same. The display apparatus includes a display substrate arranged with a display portion including a display device; a sealing substrate disposed to face the display substrate; and a sealing portion that bonds the display substrate and the sealing substrate and surrounds the display portion. The sealing portion includes a first sealing portion that includes a sealing material and an insulating layer that includes at least one first opening; and a second sealing portion that is disposed outside the first sealing portion and includes at least one gas hole.
Abstract:
A display device including a display substrate, the display substrate including an active area including a display unit that displays an image, a circuit area extending from the active area toward an exterior of the display device, and a cell seal area extending from the circuit area toward an exterior of the display device; an encapsulation substrate covering the display substrate; and a sealing portion between the display substrate and the encapsulation substrate, wherein the sealing portion includes a first sealing portion on the cell seal area, and a second sealing portion on the circuit area and extending from the first sealing portion.
Abstract:
An organic light emitting display apparatus includes a first substrate, a second substrate, an organic light emitting device, a thin film transistor, a wiring pattern and a seal. The first substrate includes a first region, a second region and a third region. The third region surrounds the first region. The second region is between the first region and the third region, and is partially overlapped with the third region. The second substrate faces the first substrate. The organic light emitting device is disposed on the first substrate in the first region. The thin film transistor is disposed on the first substrate in a region where the second region and the third region overlap. The wiring pattern is disposed on the first substrate in the second region. The seal is disposed in the third region, between the first substrate and the second substrate in the third region.
Abstract:
A display device integrated with a touch screen panel includes upper and lower substrates; the upper substrate comprising a major surface; a display area and a non-display area next to the display area when viewed in a viewing direction perpendicular to the major surface; and a sealing material formed between the upper and lower substrates and in the non-display area when viewed in the viewing direction. The display further includes a sensing cell structure formed over the upper substrate and in the display area; conductive lines formed over the upper substrate and in the non-display area, and connected to the sensing cell structure. The conductive lines overlap with the sealing material; and an optical layer is formed between two immediately neighboring conductive lines among the conductive lines.
Abstract:
An organic light-emitting display apparatus includes a first substrate, a display unit defining an active area on the first substrate and including an insulating layer, a second substrate on the display unit, one or more signal lines outside the active area and on the insulating layer, and a sealant between the first substrate and the second substrate. The sealant bonds the first substrate and the second substrate, and covers at least a portion of the signal lines.
Abstract:
An organic light-emitting display apparatus includes a first substrate, a display unit defining an active area on the first substrate and including an insulating layer, a second substrate on the display unit, one or more signal lines outside the active area and on the insulating layer, and a sealant between the first substrate and the second substrate. The sealant bonds the first substrate and the second substrate, and covers at least a portion of the signal lines.
Abstract:
An organic light emitting diode display including a first electrode disposed in a display area of a display panel, and electrically connected to a transistor connected to a gate wiring and a data wiring; a pixel definition film provided on the display panel, and having an opening through which the first electrode is exposed; organic emission layers disposed on the first electrode; column spacers disposed on non-display areas of the display panel, and disposed on the pixel definition layer; a second electrode disposed on the organic emission layers and the column spacers; and signal blocking metal wirings disposed on both side edges of the organic emission layers, and disposed between the first electrode and the second electrode.
Abstract:
A display device includes: a substrate on which a display unit is formed and an encapsulation unit for sealing the substrate; a touch screen panel formed on the encapsulation unit; a window cover provided on the touch screen panel; an alignment key for aligning positions of the display panel and the window cover; and a sealing portion disposed between the substrate and encapsulation unit. An area expansion portion is formed in a position of the sealing portion corresponding to the alignment key.
Abstract:
An organic light emitting display device and manufacturing method thereof are disclosed. One inventive aspect includes a first substrate, a second substrate, a pixel unit, a circuit unit, a sealing member and a radiation unit. The pixel unit is formed on the first substrate and comprises an organic light emitting device and a thin-film transistor (TFT). The radiation unit includes radiation fins formed in the sealing member and a radiation layer contacting first ends of the radiation fins.