Abstract:
Provided are a display apparatus and a method of manufacturing the same. The display apparatus includes a display substrate arranged with a display portion including a display device; a sealing substrate disposed to face the display substrate; and a sealing portion that bonds the display substrate and the sealing substrate and surrounds the display portion. The sealing portion includes a first sealing portion that includes a sealing material and an insulating layer that includes at least one first opening; and a second sealing portion that is disposed outside the first sealing portion and includes at least one gas hole.
Abstract:
An organic light emitting display device and manufacturing method thereof are disclosed. One inventive aspect includes a first substrate, a second substrate, a pixel unit, a circuit unit, a sealing member and a radiation unit. The pixel unit is formed on the first substrate and comprises an organic light emitting device and a thin-film transistor (TFT). The radiation unit includes radiation fins formed in the sealing member and a radiation layer contacting first ends of the radiation fins.
Abstract:
An organic light-emitting display apparatus includes a plurality of lines disposed to include crossing points where lines insulated from one another by an insulation layer cross. If a defect occurs at one of the crossing points, the lines may be shorted together and the apparatus malfunctions. A method of identifying a shorted crossing point uses a test light-emitting device that is disposed to correspond to the crossing point and to emit light when a short is present at its corresponding crossing point.
Abstract:
A display device including a display substrate, the display substrate including an active area including a display unit that displays an image, a circuit area extending from the active area toward an exterior of the display device, and a cell seal area extending from the circuit area toward an exterior of the display device; an encapsulation substrate covering the display substrate; and a sealing portion between the display substrate and the encapsulation substrate, wherein the sealing portion includes a first sealing portion on the cell seal area, and a second sealing portion on the circuit area and extending from the first sealing portion.
Abstract:
A thin film transistor includes a semiconductor which is disposed on a substrate and includes a source region, a drain region and a channel region, a gate insulating layer disposed on the semiconductor, a gate electrode disposed on the gate insulating layer, an interlayer insulating layer disposed on the gate electrode, contact holes defined in the interlayer insulating layer, the contact holes respectively exposing the source region and the drain region of the semiconductor, and a source electrode and a drain electrode which are disposed on the interlayer insulating layer and respectively contact the source region and the drain region through the contact holes, where at least one of the contact holes exposing the source region and the drain region obliquely traverses the semiconductor.
Abstract:
A thin film transistor includes a semiconductor which is disposed on a substrate and includes a source region, a drain region and a channel region, a gate insulating layer disposed on the semiconductor, a gate electrode disposed on the gate insulating layer, an interlayer insulating layer disposed on the gate electrode, contact holes defined in the interlayer insulating layer, the contact holes respectively exposing the source region and the drain region of the semiconductor, and a source electrode and a drain electrode which are disposed on the interlayer insulating layer and respectively contact the source region and the drain region through the contact holes, where at least one of the contact holes exposing the source region and the drain region obliquely traverses the semiconductor.
Abstract:
An organic light-emitting display includes first sub-pixels of a first color and second sub-pixels of a second color. Pairs of the first sub-pixels are consecutively arranged in different rows, and pairs of the second sub-pixels are consecutively arranged in different rows. The pairs of first sub-pixels and the pairs of second sub-pixels arranged alternately in a first column, and third sub-pixels are in a second column adjacent to the first column. When one sub-pixel is defective, a control circuit provides current another sub-pixel of the same color.
Abstract:
An organic light emitting display (OLED) device that includes a first substrate and a second substrate. An organic light emitting element and a sealing member are formed between the first substrate and the second substrate. A touch panel, a block pattern, and a protective layer are formed on the second substrate. The block pattern is arranged above the sealing member to prevent a center of the sealing member from being excessively illuminated by a laser beam during a curing process.
Abstract:
A display device with an integrated touch screen panel is disclosed. In one aspect, the display device includes an upper substrate and a lower substrate each including a display region and a non-display region. A sealing member is formed between the non-display regions of the upper and lower substrates and the sealing member includes a first region and a second region, wherein the second region is located adjacent to the corners of the substrates. An electrode is formed over substantially the entire display region of the lower substrate. A power line is formed in the non-display region of the lower substrate and a first connection electrode is formed electrically connecting the power line to an end portion of the electrode. Each of the power line, the end portion of the electrode, and the first connection electrode at least partially overlaps the first region and does not overlap the second region.
Abstract:
A display device integrated with a touch screen panel includes upper and lower substrates; the upper substrate comprising a major surface; a display area and a non-display area next to the display area when viewed in a viewing direction perpendicular to the major surface; and a sealing material formed between the upper and lower substrates and in the non-display area when viewed in the viewing direction. The display further includes a sensing cell structure formed over the upper substrate and in the display area; conductive lines formed over the upper substrate and in the non-display area, and connected to the sensing cell structure. The conductive lines overlap with the sealing material; and an optical layer is formed between two immediately neighboring conductive lines among the conductive lines.