Abstract:
A gate driving circuit includes a plurality of stages. A k-th stage from among the plurality of stages, the k-th stage includes a first input circuit to receive a (k−1)th gate signal from a (k−1)th stage and to precharge a first node, a second input circuit to receive a (k+2)th gate signal from a (k+2)th stage to transmit the received (k+2)th gate signal to a second node, an output circuit to output a first clock signal as a k-th gate signal in response to a signal of the first node, a discharge circuit configured to discharge the first node through the k-th gate signal in response to a signal of the second node, a first transfer circuit to transfer a second clock signal to the first node, and a second transfer circuit to transfer the first clock signal to the second node.
Abstract:
A thin film transistor includes: a gate electrode; a source electrode; a drain electrode facing the source electrode; an oxide semiconductor layer disposed between the gate electrode and the source electrode or between the gate electrode and the drain electrode; and a gate insulating layer disposed between the gate electrode and the source electrode or between the gate electrode and the drain electrode, wherein when a signal applied to the gate electrode is a turnoff signal, a voltage applied to the gate electrode has a negative value.
Abstract:
A gate driving circuit includes driving stages. Each of the driving stages applies each of gate signals to each of gate lines of a display panel. A k-th (k is a natural number equal to or greater than 2) driving stage includes a first output transistor, a capacitor, and first and second control transistor. The first output transistor includes a control electrode connected to a first node, an input electrode receiving a clock signal, and an output electrode outputting a k-th gate signal. The capacitor is connected between the output electrode of the first output transistor and the control electrode of the first output transistor. The first control transistor applies a first control signal to a second node to control a voltage of the first node before the k-th gate signal is output. The second control transistor is diode-connected between the second node and the first node.
Abstract:
A gate driving circuit including first through (N)th stages is provided. An (M)th stage of the first through (N)th stages includes a pull-up control part, a pull-up part, a carry holding part, a carry part, and a first pull-down part. The pull-up control part applies a second node signal of a second node to a first node in response to the second node signal. The pull-up part outputs a clock signal as an (M)th gate output signal in response to the first node signal. The carry holding part applies the (M)th gate output signal to the second node in response to the (M)th gate output signal. The carry part outputs the clock signal as an (M)th carry signal in response to the first node signal. The first pull-down part pulls down the (M)th gate output signal to a first off voltage.
Abstract:
A gate driving circuit includes driving stages. Each of the driving stages applies each of gate signals to each of gate lines of a display panel. A k-th (k is a natural number equal to or greater than 2) driving stage includes a first output transistor, a capacitor, and first and second control transistor. The first output transistor includes a control electrode connected to a first node, an input electrode receiving a clock signal, and an output electrode outputting a k-th gate signal. The capacitor is connected between the output electrode of the first output transistor and the control electrode of the first output transistor. The first control transistor applies a first control signal to a second node to control a voltage of the first node before the k-th gate signal is output. The second control transistor is diode-connected between the second node and the first node.
Abstract:
Each stage of a gate driver includes a controlling part which increases an electric potential of a boosting line in response to a carry signal of a previous stage and decreases the electric potential of the boosting line in response to the carry signal of a next stage, a first output part which turns on in response to the increased electric potential of the boosting line and receiving a clock signal to output a gate signal of a present stage, and a second output part which turns on in response to the increased electric potential of the boosting line and receiving the clock signal to output the carry signal of the present stage. The boosting line of the present stage is disposed adjacent to a gate line which is connected to one of next stages following the present stage.
Abstract:
A thin film transistor includes: a gate electrode; a source electrode; a drain electrode facing the source electrode; an oxide semiconductor layer disposed between the gate electrode and the source electrode or between the gate electrode and the drain electrode; and a gate insulating layer disposed between the gate electrode and the source electrode or between the gate electrode and the drain electrode, wherein when a signal applied to the gate electrode is a turnoff signal, a voltage applied to the gate electrode has a negative value.
Abstract:
A method of processing touch-image data includes calculating a plurality of motion vectors using a plurality of low-resolution touch-image data frames, aligning sensing data corresponding to an object detected in the low-resolution touch-image data frames using the motion vectors to generate an overlapped touch-image data frame, generating high-resolution data corresponding to the detected object using the overlapped touch-image data frame and detecting the touch position and generating touch position data of the detected object using the high-resolution touch position data corresponding to the detected object.
Abstract:
A method of processing touch-image data includes calculating a plurality of motion vectors using a plurality of low-resolution touch-image data frames, aligning sensing data corresponding to an object detected in the low-resolution touch-image data frames using the motion vectors to generate an overlapped touch-image data frame, generating high-resolution data corresponding to the detected object using the overlapped touch-image data frame and detecting the touch position and generating touch position data of the detected object using the high-resolution touch position data corresponding to the detected object.
Abstract:
A display device with space for accommodating elements of a gate driver in a display area of the display device, the display device including first and second adjacent pixel electrodes, and third and fourth adjacent pixel electrodes; a gate line extending between the first pixel electrode and the second pixel electrode and between the third pixel electrode and the fourth pixel electrode; a gate driver having a plurality of elements and configured to drive the gate line; and a light blocking layer overlapping the gate line, wherein the light blocking layer comprises a first light blocking portion and a second light blocking portion, the first light blocking portion is adjacent to the first pixel electrode and the second pixel electrode, the second light blocking portion is adjacent to the third pixel electrode and the fourth pixel electrode, the second light blocking portion having a larger size than a size of the first light blocking portion, and at least one of the plurality of elements of the gate driver overlaps the second light blocking portion.