Abstract:
A display device comprises a pixel configured to be driven in cycle periods during a frame period defined by a vertical start signal, and a display driver configured to divide a cycle period into subfields for driving, configured to control an amount of current flowing through the pixel and to control emission on-duties of the subfields, and configured to independently determine, for the cycle period, a reference duty that is a minimum emission on-duty set in the cycle period based on a dimming signal.
Abstract:
A display device includes a display area including a first pixel area, in which pixels including subpixels of a first arrangement structure are disposed, and a second pixel area, in which pixels including subpixels of a second arrangement structure are disposed, a panel driver which provides a driving signal to the display area, and a data processor which converts first image data to second image data, where the first image data corresponds to the boundary subpixel of a first boundary pixel located adjacent to the second pixel area, among the pixels of the first pixel area, and the boundary subpixel of a second boundary pixel adjacent to the first boundary pixel, among the pixels of the second pixel area. The data processor determines the boundary subpixels of the first and second boundary pixels based on boundary types indicating positional relationships between the first and second boundary pixels.
Abstract:
A method for processing image data according to an exemplary embodiment of the present invention includes detecting a gray level distribution of frame image data, calculating a cluster size of each of gray levels based on the gray level distribution, determining a remapping function for increasing contrast of the frame image data based on the gray level distribution and the cluster size, and converting the frame image data based on the remapping function.
Abstract:
A method for processing image data according to an exemplary embodiment of the present invention includes detecting a gray level distribution of frame image data, calculating a cluster size of each of gray levels based on the gray level distribution, determining a remapping function for increasing contrast of the frame image data based on the gray level distribution and the cluster size, and converting the frame image data based on the remapping function.
Abstract:
A display device is disclosed. In one embodiment, the display device includes a first conversion unit receiving gray data and outputting a gray data value of a second gamma curve, which has a luminance equal to a luminance of the gray data on a first gamma curve. The device may also include a memory storing a look-up table (LUT) which includes first and second data groups and compensated gray data for the second gamma curve. The device may further include a reference unit generating the compensated gray data based on the two converted gray data. Coordinates formed of i) each value in the first data group and ii) each value in the second data group may correspond to any one of the compensated gray data.
Abstract:
A display device includes a display area including a first pixel area, in which pixels including subpixels of a first arrangement structure are disposed, and a second pixel area, in which pixels including subpixels of a second arrangement structure are disposed, a panel driver which provides a driving signal to the display area, and a data processor which converts first image data to second image data, where the first image data corresponds to the boundary subpixel of a first boundary pixel located adjacent to the second pixel area, among the pixels of the first pixel area, and the boundary subpixel of a second boundary pixel adjacent to the first boundary pixel, among the pixels of the second pixel area. The data processor determines the boundary subpixels of the first and second boundary pixels based on boundary types indicating positional relationships between the first and second boundary pixels.
Abstract:
A display device includes a pixel unit including first pixels connected to a data line and second pixels connected to the data line; a sensing unit overlapping the first and second pixels, the sensing unit including sensing electrodes; and a sensing controller for receiving a sensing signal from at least some of the sensing electrodes in accordance with a sensing enable signal having a sensing-on level. In a first frame period, at least two of first data voltages having different levels are applied through the data line to the first pixels and second data voltages having the same level as each other but different from the first data voltages are applied through the data line to the second pixels. In the first frame period, the sensing enable signal has a sensing-off level while the first data voltages are applied and the sensing-on level while the second data voltages are applied.
Abstract:
A display device is disclosed. In one embodiment, the display device includes a first conversion unit receiving gray data and outputting a gray data value of a second gamma curve, which has a luminance equal to a luminance of the gray data on a first gamma curve. The device may also include a memory storing a look-up table (LUT) which includes first and second data groups and compensated gray data for the second gamma curve. The device may further include a reference unit generating the compensated gray data based on the two converted gray data. Coordinates formed of i) each value in the first data group and ii) each value in the second data group may correspond to any one of the compensated gray data.