Abstract:
A thin film transistor array panel is provided. The thin film transistor array panel includes a substrate, a seed layer positioned on the substrate, and a semiconductor layer positioned on the seed layer, wherein a lattice mismatch between the seed layer and the semiconductor layer is equal to or less than 1.4%.
Abstract:
A touch screen panel includes a substrate, first and second sensing patterns, first and second pattern connecting lines, a pad portion, and lines. The first and second sensing patterns are disposed on the substrate in a sensing area and arranged in directions intersecting each other. The first pattern connecting lines are disposed in the same layer as the first sensing patterns and the second sensing patterns, and electrically connect adjacent first sensing patterns to each other. The second pattern connecting lines intersect to be insulated from the first pattern connecting lines, and electrically connect adjacent second sensing patterns to each other. The pad portion is disposed on the substrate in a peripheral area, and includes pads. The lines connect the first sensing patterns and the second sensing patterns to the pads.
Abstract:
A touch panel and a method of fabricating the same are provided. The touch panel may include: a substrate; first sensing electrodes disposed on a first surface and arranged along a first direction and second sensing electrodes arranged along a second direction; at least one first connector connecting the first sensing electrodes in the first direction; a first insulating layer pattern disposed on the first connector; at least one second connector disposed on the first insulating layer pattern, intersecting the first connector, and connecting the second sensing electrodes in the second direction; and wires disposed on the first surface of the substrate in the peripheral area and electrically connected to the first sensing electrodes and the second sensing electrodes. The first connector includes a first light-transmitting conductive pattern disposed on the first surface of the substrate and a first light-blocking conductive pattern disposed on the first light-transmitting conductive pattern.
Abstract:
A touch panel and a method of fabricating the same are provided. The touch panel may include: a substrate; first sensing electrodes disposed on a first surface and arranged along a first direction and second sensing electrodes arranged along a second direction; at least one first connector connecting the first sensing electrodes in the first direction; a first insulating layer pattern disposed on the first connector; at least one second connector disposed on the first insulating layer pattern, intersecting the first connector, and connecting the second sensing electrodes in the second direction; and wires disposed on the first surface of the substrate in the peripheral area and electrically connected to the first sensing electrodes and the second sensing electrodes. The first connector includes a first light-transmitting conductive pattern disposed on the first surface of the substrate and a first light-blocking conductive pattern disposed on the first light-transmitting conductive pattern.
Abstract:
A liquid crystal display device includes: a substrate; a thin film transistor (TFT) having a semiconductive layer formed on the substrate and source and drain electrodes formed on the semiconductive layer; an interlayer insulating layer formed on the thin film transistor and formed with a contact hole partially exposing the drain electrode; a first light blocking structure-forming layer covering the contact hole and connected to the drain electrode; a second light blocking structure-forming layer formed on the first light blocking structure-forming layer; a pixel electrode formed on the interlayer insulating layer; and a common electrode disposed to face the pixel electrode, wherein at least one microcavity having a respective liquid crystal injection hole is formed between the pixel electrode and the common electrode, and the microcavity is filled to contain therein a liquid crystal layer portion formed of liquid crystal molecules. The first and second light blocking structure-forming layers allow for repair of the TFT while providing to the TFT protection from leakage light. A material of the second light blocking structure-forming layer is selected to include one that is not damaged by a process step of selectively removing a sacrificial layer.
Abstract:
A thin film transistor array panel includes: a semiconductor layer disposed on an insulation substrate; a gate electrode overlapping the semiconductor layer; a source electrode and a drain electrode overlapping the semiconductor layer; a first barrier layer disposed between the source electrode and the semiconductor layer; and a second barrier layer disposed between the drain electrode and the semiconductor layer, wherein the first barrier layer and the second barrier layer include nickel-chromium (NiCr).
Abstract:
An input sensing unit including a plurality of capacitive sensing electrodes, and a conductive layer disposed on at least a portion of the sensing electrodes, in which the conductive layer overlaps at least a portion of the sensing electrodes in a plan view, and the conductive layer includes a plurality of conductive patterns spaced apart from each other.
Abstract:
A touch panel includes a substrate, a first signal line, and a second signal line. The first signal line extends on the substrate in a first direction and includes a first height from the substrate. The second signal line extends on the substrate in a second direction crossing the first direction and includes a second height from the substrate. The second signal line is disposed in the same layer as the first signal line. The second height is greater than the first height.
Abstract:
A display device including a display panel including pixels, and a touch sensor disposed on the display pane. The touch sensor includes a touch substrate, sensing electrodes disposed on the touch substrate, a passivation layer covering the sensing electrodes on the touch substrate and a first low refractive layer disposed between the touch substrate and the passivation layer, and having a refractive index lower than a refractive index of the passivation layer.
Abstract:
A touch screen panel includes a substrate including an active area, a non-active area at the periphery of the active area, and a contact area between the active area and the non-active area, sensing electrodes disposed in the active area, connecting lines disposed in the non-active area and the contact area and electrically connected to the sensing electrodes, and a metal capping layer disposed in the contact area, in which the sensing electrodes include a first overcoating layer disposed on the substrate as a conductor layer, and a second overcoating layer disposed on the first overcoating layer, the connecting lines include the first overcoating layer, the second overcoating layer, and a metal line layer disposed on the second overcoating layer, and the metal capping layer couple the metal line layer to the first overcoating layer through a contact hole to expose the first overcoating layer in the contact area.