Abstract:
A display device includes a display area including gate lines; a plurality of gate drivers disposed in a non-display area that is adjacent to the display area and connected to the gate lines; and a driving power transmitting line disposed in the non-display area and providing a driving power to the gate drivers. The driving power transmitting line includes a first driving power transmitting line and a second driving power transmitting line overlapping each other with an insulating layer disposed therebetween, the first driving power transmitting line and the second driving power transmitting line are connected with each other through a plurality of contact holes formed in the insulating layer, and the contact holes are disposed in a plurality of regions respectively overlapping the gate drivers in a direction parallel to an extending direction of the gate lines.
Abstract:
An input sensing device including: a power line; driving lines; a first signal line including sub-lines; a second signal line connected to the sub-lines; and sensor pixels connected to the power line, the driving lines, and the first signal line, wherein at least one sensor pixel of the sensor pixels includes: an optical sensor that transfers a photoelectrically converted charge from the power line to a first node in response to a driving signal provided through a first driving line of the driving lines; a first transistor connected between the first node and a first sub-line among the sub-lines, wherein the first transistor includes a gate electrode connected to the first driving line; and a second transistor connected between the first node and a second sub-line among the sub-lines, wherein the second transistor includes a gate electrode connected to the first driving line.
Abstract:
A touch display device according to an exemplary embodiment of the present inventive concept includes: a plurality of pixel circuits; a plurality of first signal lines respectively connected to the plurality of pixel circuits and extending in a first direction; and a plurality of second signal lines respectively connected to the plurality of pixel circuits and extending in a second direction, wherein at least one signal line among the plurality of first signal lines and the plurality of second signal lines function as a first sensing electrode and a second sensing electrode in the touch mode, respectively.
Abstract:
A display including first to n-th pixels electrically connected with a first data line, and a data compensator for generating a reference voltage of a k-th pixel (k being between 1 and n) based on a first coupling voltage between the k-th pixel and the first data line and a second coupling voltage between the k-th pixel and a second data line, and comparing an average voltage generated based on a reference voltage of at least one of the first to n-th pixels with the reference voltage of the k-th pixel to generate a compensation signal, wherein the reference voltage of at least one of the first to n-th pixels is based on a coupling voltage between the at least one of the first to n-th pixels and the first data line and based on a coupling voltage between the pixels and the second data line.
Abstract:
A pixel includes a first transistor, a second transistor, a third transistor, and a capacitor. The first transistor connects a first power source to a light emitter based on a first control signal. The second transistor connects a pixel circuit to the light emitter. The third transistor connects a second power source to the pixel circuit based on a second control signal. The capacitor is a MOS capacitor having a first electrode connected to receive the second control signal and a second electrode connected to the second transistor.
Abstract:
According to embodiments of the disclosure, a DC-DC converter includes a voltage generator configured to generate an output voltage by converting an input voltage, a first mode driver configured to generate a first switching signal to drive the voltage generator in a first mode, a second mode driver configured to generate a second switching signal to drive the voltage generator in a second mode, a third mode driver configured to generate a third switching signal to drive the voltage generator in a third mode, and a mode controller configured to determine an output load of the voltage generator using the first switching signal, the second switching signal, and the third switching signal, and supply one of the first switching signal, the second switching signal, and the third switching signal to the voltage generator according to the output load.
Abstract:
A thin film transistor array panel and a method of manufacturing the same, the thin film transistor array panel including: a polysilicon thin film transistor formed on a substrate, in which a source region and a drain region of a semiconductor layer of the thin film transistor are electrically connected to a power supply line. The power supply line is configured to apply a voltage to remove a floating state of a polysilicon semiconductor layer.
Abstract:
A display device of the disclosure includes a panel including pixels, and first sensors and second sensors overlapping the pixels, and a circuit board. The circuit board includes a first sensor pad electrically connected to a respective first sensor, a second sensor pad electrically connected to a respective second sensor, and a data pad electrically connected to respective pixels, a sensor driver, a first sensor line having one end connected to the first sensor pad and another end connected to the sensor driver, a second sensor line having one end connected to the second sensor pad and another end connected to the sensor driver, a data extension line having one end connected to the data pad, and a first decoupling capacitor connected to the first sensor line disposed between the sensor driver and a first point where the first sensor line and the data extension line cross.
Abstract:
A display device includes a display area including gate lines; a plurality of gate drivers disposed in a non-display area that is adjacent to the display area and connected to the gate lines; and a driving power transmitting line disposed in the non-display area and providing a driving power to the gate drivers. The driving power transmitting line includes a first driving power transmitting line and a second driving power transmitting line overlapping each other with an insulating layer disposed therebetween, the first driving power transmitting line and the second driving power transmitting line are connected with each other through a plurality of contact holes formed in the insulating layer, and the contact holes are disposed in a plurality of regions respectively overlapping the gate drivers in a direction parallel to an extending direction of the gate lines.
Abstract:
A touch sensing apparatus that includes a touch panel including first electrodes extending in a first direction and arranged along a second direction, second electrodes extending in the second direction and arranged along the first direction, a signal output unit configured to supply touch driving signals to the first electrodes and configured to receive touch sensing signals generated by the touch driving signals from the first electrodes, and a touch controller configured to calculate a touch position with information from at least one of the first electrodes receiving the touch sensing signals and the first electrodes supplying the touch driving signals corresponding to the touch sensing signals. The second electrodes are connected to corresponding first electrodes and the second electrodes are configured to transfer the touch sensing signals to the corresponding first electrodes.