Abstract:
A method of manufacturing a display device including the steps of: forming, on a first mother substrate, pixels including pixel electrodes, gate lines and data lines connected to the pixels; dividing the data lines into groups and connecting the data lines of the same group to one connection line; forming inspection electrodes on the first mother substrate overlapping a shot boundary portion of a mask, the inspection electrodes connected to a plurality of connection lines, respectively; preparing a second mother substrate; forming a common electrode on the second mother substrate; forming a mother panel including the first and second mother substrates and a liquid crystal layer therebetween; applying a first voltage to the common electrode and a second voltage to the inspection electrodes; and determining whether the inspection electrodes and the common electrode are short-circuited based on an image displayed in a display area of the mother panel.
Abstract:
The present inventive concept is related to a display device in which a compensated voltage is applied to a gate line by compensating for a voltage drop of a voltage applied to the gate line.
Abstract:
A liquid crystal cell panel includes a first substrate from which is formed a thin film transistor array substrate, the first substrate including a plurality of unit cells and test terminals which respectively correspond to the unit cells, and a second substrate which faces the first substrate and from which is formed a color filter substrate. The first substrate further includes a first cutting pattern at each of a plurality of corners thereof, and the second substrate includes a second cutting pattern at each of a plurality of corners thereof, the second cutting patterns corresponding one-to-one with the first cutting patterns. Corresponding first and second cutting patterns cross each other in a plan view, and the crossing first and second cutting patterns expose a test terminal adjacent to the crossing first and second cutting patterns to outside the liquid crystal cell panel.
Abstract:
A gate driver includes stages each including a first-transistor including a gate-electrode receiving an output-signal of one previous-stage or a vertical-start-signal as a first input-signal, a first-electrode receiving the first input-signal, and a second-electrode connected to a first-node, a second-transistor including a gate-electrode connected to the first-node, a first-electrode receiving a first clock-signal, and a second-electrode connected to a first-output-terminal, a third-transistor including a gate-electrode receiving a second clock-signal, a first-electrode receiving a first power-voltage, and a second-electrode connected to the first-output-terminal, a fourth-transistor including a gate-electrode receiving a third clock-signal, a first-electrode receiving the third clock-signal, and a second-electrode connected to a second-node, a fifth-transistor including a gate-electrode connected to the second-node, a first-electrode receiving a second power-voltage, and a second-electrode connected to the first-node, and a sixth-transistor including a gate-electrode connected to the first-node, a first-electrode receiving the second power-voltage, and a second-electrode connected to the second-node.
Abstract:
A gate driver includes stages each including a first-transistor including a gate-electrode receiving an output-signal of one previous-stage or a vertical-start-signal as a first input-signal, a first-electrode receiving the first input-signal, and a second-electrode connected to a first-node, a second-transistor including a gate-electrode connected to the first-node, a first-electrode receiving a first clock-signal, and a second-electrode connected to a first-output-terminal, a third-transistor including a gate-electrode receiving a second clock-signal, a first-electrode receiving a first power-voltage, and a second-electrode connected to the first-output-terminal, a fourth-transistor including a gate-electrode receiving a third clock-signal, a first-electrode receiving the third clock-signal, and a second-electrode connected to a second-node, a fifth-transistor including a gate-electrode connected to the second-node, a first-electrode receiving a second power-voltage, and a second-electrode connected to the first-node, and a sixth-transistor including a gate-electrode connected to the first-node, a first-electrode receiving the second power-voltage, and a second-electrode connected to the second-node.