Abstract:
A display device includes: a substrate including first and second sides; first and second pixels connected to different scan lines; a light blocking layer defining first and second light emission areas of the first and second pixels; and patterns overlapping the first and second light emission areas and on different layers between a pixel electrode and the substrate. Each emission area is divided into first and second divided areas, between which the first divided area is the closer to the first side. In the first light emission area, an overlap area between the second divided area and the first pattern is larger than an overlap area between the first divided area and the first pattern. In the second light emission area, an overlap area between the first divided area and the first pattern is larger than an overlap area between the second divided area and the first pattern.
Abstract:
A light-emitting device includes: a substrate including a first subpixel, as second subpixel, and a third subpixel; a plurality of first electrodes respectively in the first subpixel, the second subpixel, and the third subpixel of the substrate; a second electrode facing the first electrode; an emission layer located between the plurality of first electrodes and the second electrode; a hole injection layer between the plurality of first electrodes and the emission layer; a first common layer between the hole injection layer and the emission layer, the first common layer integrated with the first subpixel, the second subpixel, and the third subpixel; a second common layer between the hole injection layer and the first common layer, the second common layer integrated with the first subpixel, the second subpixel, and the third subpixel, wherein the first common layer and the second common layer satisfy certain conditions. In particular, the first common layer consists of a blue host, and the blue host satisfies Equations 1 and 2: |EHOMO_BH|>|EHOMO_REML| Equation 1 |EHOMO_BH|>|EHOMO_GEML|. Equation 2
Abstract:
According to one or more embodiments, provided is a display apparatus including a first subpixel having a rectangular shape, a second subpixel facing a first side of the first subpixel, the second subpixel having a rectangular shape, a third subpixel facing the first side of the first subpixel and spaced apart from the second subpixel, the third subpixel having a rectangular shape, and a blocking portion comprising a blocking layer on at least one of the first subpixel, the second subpixel, or the third subpixel, and, in a plan view, overlapping at least one of the first subpixel, the second subpixel, or the third subpixel, where a distance from the first side of the first subpixel to the second subpixel is different from a distance from the first side of the first subpixel to the third subpixel.
Abstract:
A method of manufacturing a display apparatus includes: forming a pixel electrode on a substrate; forming a pixel defining layer covering at least an edge of the pixel electrode and including an opening exposing a part of the pixel electrode; performing first dry cleaning by adding oxygen gas (O2) to a surface of the pixel electrode exposed by the opening in the pixel defining layer, wherein the oxygen gas (O2) is added at a flow rate in a range of about 1,200 sccm to about 3,600 sccm; performing second dry cleaning after the first dry cleaning; forming an intermediate layer on the pixel electrode after the second dry cleaning; and forming an opposite electrode on the intermediate layer and the pixel defining layer.
Abstract:
According to one or more embodiments, provided is a display apparatus including a first subpixel having a rectangular shape, a second subpixel facing a first side of the first subpixel, the second subpixel having a rectangular shape, a third subpixel facing the first side of the first subpixel and spaced apart from the second subpixel, the third subpixel having a rectangular shape, and a blocking portion comprising a blocking layer on at least one of the first subpixel, the second subpixel, or the third subpixel, and, in a plan view, overlapping at least one of the first subpixel, the second subpixel, or the third subpixel, where a distance from the first side of the first subpixel to the second subpixel is different from a distance from the first side of the first subpixel to the third subpixel.
Abstract:
A method of manufacturing a display apparatus includes forming a first electrode on a substrate, forming a pixel-defining layer on the first electrode, the pixel-defining layer including an opening through which at least part of the first electrode is exposed, and performing a first dry cleaning on a surface of the at least part of the first electrode that is exposed through the opening. An indium-fluorine bond is formed on the surface of the at least part of the first electrode through the first dry cleaning.
Abstract:
According to one or more embodiments, provided is a display apparatus including a first subpixel having a rectangular shape, a second subpixel facing a first side of the first subpixel, the second subpixel having a rectangular shape, a third subpixel facing the first side of the first subpixel and spaced apart from the second subpixel, the third subpixel having a rectangular shape, and a blocking portion comprising a blocking layer on at least one of the first subpixel, the second subpixel, or the third subpixel, and, in a plan view, overlapping at least one of the first subpixel, the second subpixel, or the third subpixel, where a distance from the first side of the first subpixel to the second subpixel is different from a distance from the first side of the first subpixel to the third subpixel.
Abstract:
An organic light-emitting display panel includes a first display region including a plurality of first sub-pixels and a second display region including a plurality of second sub-pixels. Each of the sub-pixels includes a pixel circuit having a driving transistor to output driving current to an output node based on a data signal, a storage capacitor to store a voltage difference between the driving voltage and the gate voltage of the driving transistor, a switching transistor to transfer the data signal to the driving transistor, and a light-emitter connected to emit light based on the driving current. An overlap area of the gate electrode of the driving transistor and an anode electrode of the light-emitter in the first sub-pixel is smaller than an overlap area of the gate electrode of the driving transistor and an anode electrode of the light-emitter in the second sub-pixel.