Abstract:
A liquid crystal display (LCD) device comprises a first substrate, a second substrate disposed to face the first substrate, a liquid crystal layer which is disposed between the first substrate and the second substrate and which includes multiple liquid crystal molecules, and a self-alignment layer formed between the first substrate and the liquid crystal layer, the self-alignment layer comprising a vertical alignment additive having a molecular structure having a hydrophilic group and a polymerized group formed in both ends of a core molecule, wherein a major axis of the vertical alignment additive is at an angle less than about 90° with respect to a surface of the first substrate.
Abstract:
Provided is a display apparatus. The display apparatus includes a display module on which a display area and a non-display area configured to surround the display area and a backlight unit providing light to the display module. The display module includes an upper substrate including a wire layer configured to polarize the incident light, a lower substrate including a plurality of pixel electrodes and a common electrode line, and a liquid crystal layer disposed between the upper substrate and the lower substrate.
Abstract:
A liquid crystal display panel including a first display substrate, a second display substrate coupled to and spaced apart from the first display substrate, and a liquid crystal layer disposed between the first and second display substrates. The first and second display substrates include inorganic layers containing an inorganic silicon-based material. The liquid crystal layer includes alignment molecules vertically aligned with respect to the inorganic layers, and liquid crystal molecules vertically aligned between the inorganic layers. A manufacturing method of the liquid crystal display panel includes surface-treating the inorganic layers to vertically align the liquid crystal molecules.
Abstract:
A liquid crystal display (LCD) device comprises a first substrate, a second substrate disposed to face the first substrate, a liquid crystal layer which is disposed between the first substrate and the second substrate and which includes multiple liquid crystal molecules, and a self-alignment layer formed between the first substrate and the liquid crystal layer, the self-alignment layer comprising a vertical alignment additive having a molecular structure having a hydrophilic group and a polymerized group formed in both ends of a core molecule, wherein a major axis of the vertical alignment additive is at an angle less than about 90° with respect to a surface of the first substrate.
Abstract:
A liquid crystal display (LCD) device comprises a first substrate; a second substrate facing the first substrate; a liquid crystal layer disposed between the first substrate and the second substrate and comprising liquid crystal molecules; a first alignment layer disposed between the first substrate and the liquid crystal layer; and a second alignment layer disposed between the second substrate and the liquid crystal layer, wherein one of the first alignment layer and the second alignment layer comprises a photostable compound, or a photostable compound-derived functional group, or a photostable compound and a photostable compound-derived functional group, and the other does not comprise the photostable compound, or the photostable compound-derived functional group, or the photostable compound and the photostable compound-derived functional group.
Abstract:
Provided is a liquid crystal display apparatus. The liquid crystal display apparatus may include a first pixel electrode, a second pixel electrode, a common electrode, and a liquid crystal layer. The first pixel electrode is disposed in a first area, and includes a plurality of outer branches spaced apart from each other. The second pixel electrode is disposed in a second area spaced apart from the first area with an electrode gap therebetween and surrounded by the first area, and includes a plurality of middle branch portions spaced apart from each other. An extending direction of the electrode gap forms one of an acute angle or an obtuse angle with an extending direction of each of the outer branch portions, and the extending direction of the electrode gap forms one of an acute angle or an obtuse angle with an extending direction of each of the middle branch portions.
Abstract:
Provided is a liquid crystal display apparatus. The liquid crystal display apparatus may include a first pixel electrode, a second pixel electrode, a common electrode, and a liquid crystal layer. The first pixel electrode is disposed in a first area, and includes a plurality of outer branches spaced apart from each other. The second pixel electrode is disposed in a second area spaced apart from the first area with an electrode gap therebetween and surrounded by the first area, and includes a plurality of middle branch portions spaced apart from each other. An extending direction of the electrode gap forms one of an acute angle or an obtuse angle with an extending direction of each of the outer branch portions, and the extending direction of the electrode gap forms one of an acute angle or an obtuse angle with an extending direction of each of the middle branch portions.
Abstract:
Provided is a display device including: a substrate including a display area and a peripheral area that includes a bending area disposed adjacent to the display area; a plurality of pixels arranged in the display area; a driving circuit arranged in the peripheral area; a barrier rib layer arranged in the bending area; an input detection layer disposed on the plurality of pixels; and an optical functional layer including a first layer that is disposed on the input detection layer and includes a first opening in an area corresponding to the plurality of pixels, and a second layer that is disposed on the first layer and having a refractive index different from the first layer, wherein the first layer includes at least one valley located between the bending area and the driving circuit.
Abstract:
A liquid crystal lens panel includes a first substrate including a lens area, a non-lens area disposed adjacent to the lens area, and a cutting area disposed adjacent to the non-lens area and including a liquid crystal driving part, a second substrate disposed opposite to the first substrate, and a liquid crystal layer interposed between the first substrate and the second substrate, where the liquid crystal driving part applies a liquid crystal driving voltage to the liquid crystal layer through the non-lens area, and liquid crystal molecules of the liquid crystal layer are driven substantially in a vertical direction by the liquid crystal driving voltage.
Abstract:
A liquid crystal display device includes a first substrate, a first alignment layer on the first substrate, a second substrate facing the first substrate, a second alignment layer on the second substrate, and a liquid crystal layer between the first substrate and the second substrate and including liquid crystal molecules. The first alignment layer and the second alignment layer include a polymer including at least of polyamic acid, polyimide, and a combination including at least one of the foregoing polymers, and a compound including an epoxy cross-linker represented by Chemical Formula 1.