Abstract:
An organic light emitting transistor includes: a first electrode positioned on a substrate; a gate electrode positioned on the first electrode and including an opening formed at a center region; a first auxiliary layer positioned within the opening; an organic emission layer positioned on the first auxiliary layer and the gate electrode; a second auxiliary layer positioned on the organic emission layer; and a second electrode positioned on the second auxiliary layer.
Abstract:
Each pixel of the organic light-emitting display apparatus comprises a plurality of sub-pixels by using an organic light-emitting transistor (OLET). The OLET includes a plurality of gate electrodes that have different areas and are arranged adjacent to one another, a plurality of source electrodes and a plurality of drain electrodes, and an organic thin film layer disposed between or below the source electrodes and drain electrodes, the organic thin film layer including an organic light-emitting material, wherein the sub-pixels of the pixel selected by a scan signal are selectively turned-on/off by a data signal to represent a gradation.
Abstract:
A method of manufacturing an organic light emitting display apparatus by utilizing a deposition apparatus for forming an organic layer on a substrate includes: fixing the substrate to a mask assembly for forming a common layer or a mask assembly for forming a pattern layer in a loading unit; when the one or more deposition assemblies are separated from the substrate, forming an intermediate layer by depositing a deposition material discharged from the one or more deposition assemblies in a deposition unit of the deposition apparatus onto the substrate while the substrate is moved relative to the one or more deposition assemblies by a first conveyer unit; and separating the substrate on which the deposition is finished from the mask assembly for forming the common layer or the mask assembly for forming the pattern layer in an unloading unit.
Abstract:
Each pixel of the organic light-emitting display apparatus comprises a plurality of sub-pixels by using an organic light-emitting transistor (OLET). The OLET includes a plurality of gate electrodes that have different areas and are arranged adjacent to one another, a plurality of source electrodes and a plurality of drain electrodes, and an organic thin film layer disposed between or below the source electrodes and drain electrodes, the organic thin film layer including an organic light-emitting material, wherein the sub-pixels of the pixel selected by a scan signal are selectively turned-on/off by a data signal to represent a gradation.
Abstract:
An organic light emitting device includes a substrate, a first electrode disposed on the substrate, a first organic layer pattern disposed on the first electrode, an auxiliary electrode pattern alternately disposed with the first organic layer pattern, and including an upper insulation layer, a lower insulation layer, and an auxiliary electrode disposed therebetween, a light emitting layer disposed on the first organic layer pattern and the auxiliary electrode pattern, a second organic layer disposed on the light emitting layer and a second electrode disposed on the second organic layer.
Abstract:
A method of manufacturing an organic light emitting display apparatus by utilizing a deposition apparatus for forming an organic layer on a substrate includes: fixing the substrate to a mask assembly for forming a common layer or a mask assembly for forming a pattern layer in a loading unit; when the one or more deposition assemblies are separated from the substrate, forming an intermediate layer by depositing a deposition material discharged from the one or more deposition assemblies in a deposition unit of the deposition apparatus onto the substrate while the substrate is moved relative to the one or more deposition assemblies by a first conveyer unit; and separating the substrate on which the deposition is finished from the mask assembly for forming the common layer or the mask assembly for forming the pattern layer in an unloading unit.
Abstract:
An organic light emitting device includes a substrate, a first electrode disposed on the substrate, a first organic layer pattern disposed on the first electrode, an auxiliary electrode pattern alternately disposed with the first organic layer pattern, and including an upper insulation layer, a lower insulation layer, and an auxiliary electrode disposed therebetween, a light emitting layer disposed on the first organic layer pattern and the auxiliary electrode pattern, a second organic layer disposed on the light emitting layer and a second electrode disposed on the second organic layer.
Abstract:
An organic light emitting transistor includes: a first electrode positioned on a substrate; a gate electrode positioned on the first electrode and including an opening formed at a center region; a first auxiliary layer positioned within the opening; an organic emission layer positioned on the first auxiliary layer and the gate electrode; a second auxiliary layer positioned on the organic emission layer; and a second electrode positioned on the second auxiliary layer.