Abstract:
A method of compensating for Mura in a display panel includes displaying a high gray-scale image and a low gray-scale image on a display panel. The displayed images are photographed to generate a high gray-scale luminance image and a low gray-scale luminance image. An ELA Mura for-measurement image having moiré-removed luminance values is generated by dividing luminance values of the low gray-scale luminance image by luminance values of the high gray-scale luminance image. One-dimensional average data is obtained from the ELA Mura for-measurement image. The one-dimensional average data is transformed into frequency-domain data. Target frequency-domain data having a maximum peak value is identified from the frequency-domain data. A direction, an intensity, and a frequency of the ELA Mura are obtained from the target frequency-domain data. A filter is determined based on the obtained information. The filter is applied to image data.
Abstract:
Provided is a display device including: a data processor controlling color reproducibility of RGB data under a low illumination environment to process an input image signal; a signal controller dividing the input image signal in a frame unit according to a vertical synchronization signal and the input image signal in a scan line unit according to a horizontal synchronization signal to generate an image data signal; and a data driver receiving the image data signal to transfer a plurality of data signals to each of the plurality of data lines coupled to a plurality of pixels. The display device reduces glaring and provides a higher-definition image to a user due to the accurate representation of neutral white under the high illumination environment.
Abstract:
An organic light emitting diode (OLED) display includes a substrate including a central area and a peripheral area adjacent the central area and bent at the center thereof, a first central OLED disposed on the central area of the bent substrate and including a first central organic emission layer having a first central thickness, and a first surrounding OLED disposed on the peripheral area of the bent substrate and including a first surrounding organic emission layer having a first surrounding thickness.
Abstract:
A color gamut controlling device and a display device including the color gamut controlling device. The color gamut controlling device includes a light sensing unit, a first calculation unit, a second calculation unit, and a color gamut calculation unit. The light sensing unit measures a luminance of external light. The first calculation unit calculates adjusted tristimulus values for each of three primary colors based on the measured luminance. The second calculation unit calculates final tristimulus values for each of the three primary colors using the adjusted tristimulus values and target tristimulus values for each of the three primary colors. The color gamut calculation unit calculates a corrected color gamut from the final tristimulus values. The light sensing unit may further measure tristimulus values of the external light for each of the three primary colors.
Abstract:
A display device includes a display panel including a plurality of pixels arranged in a pentile pattern, the plurality of pixels having at least a first pixel and a second pixel adjacent to the first pixel, and the display panel being configured to display colors corresponding to respective output color data of the first and second pixels, and a color data converter configured to convert input color data to generate the output color data, the color data converter including a determiner configured to receive the input color data, to determine whether the first pixel displays a white color and the second pixel displays a black color, and to generate a first determination signal based on a result of the determination, and an adjustment unit configured to adjust the output color data of the first or second pixel based on the first determination signal.
Abstract:
A display device includes a display panel including a plurality of pixels arranged in a pentile pattern, the plurality of pixels having at least a first pixel and a second pixel adjacent to the first pixel, and the display panel being configured to display colors corresponding to respective output color data of the first and second pixels, and a color data converter configured to convert input color data to generate the output color data, the color data converter including a determiner configured to receive the input color data, to determine whether the first pixel displays a white color and the second pixel displays a black color, and to generate a first determination signal based on a result of the determination, and an adjustment unit configured to adjust the output color data of the first or second pixel based on the first determination signal.
Abstract:
A color gamut controlling device and a display device including the color gamut controlling device. The color gamut controlling device includes a light sensing unit, a first calculation unit, a second calculation unit, and a color gamut calculation unit. The light sensing unit measures a luminance of external light. The first calculation unit calculates adjusted tristimulus values for each of three primary colors based on the measured luminance. The second calculation unit calculates final tristimulus values for each of the three primary colors using the adjusted tristimulus values and target tristimulus values for each of the three primary colors. The color gamut calculation unit calculates a corrected color gamut from the final tristimulus values. The light sensing unit may further measure tristimulus values of the external light for each of the three primary colors.
Abstract:
Provided is a display device including: a data processor controlling color reproducibility of RGB data under a low illumination environment to process an input image signal; a signal controller dividing the input image signal in a frame unit according to a vertical synchronization signal and the input image signal in a scan line unit according to a horizontal synchronization signal to generate an image data signal; and a data driver receiving the image data signal to transfer a plurality of data signals to each of the plurality of data lines coupled to a plurality of pixels. The display device reduces glaring and provides a higher-definition image to a user due to the accurate representation of neutral white under the high illumination environment.
Abstract:
An organic light-emitting display device including a first organic light-emitting device including a first pixel electrode, a first organic emission layer (EML) for emitting white light, and an opposite electrode; a first color filter between an insulating layer and the first pixel electrode, and transmitting blue light; a second organic light-emitting device including a second pixel electrode, the first organic EML for emitting white light, and the opposite electrode; a second color filter between the insulating layer and the second pixel electrode, and transmitting green light; a third organic light-emitting device including a third pixel electrode, a second organic EML for emitting a mixture light including a red color and a blue color, and the opposite electrode; and a third color filter between the insulating layer and the third pixel electrode, and including a first region for transmitting red light and a second region for transmitting the mixture light.
Abstract:
A head mounted display device includes a display panel including a first display region and a second display region which is arranged at a first angle with respect to the first display region; a reflective panel arranged at a second angle with respect to the second display region, to output a first transmitted light by transmitting a first light which is output from the first display region, and to output a second reflected light by reflecting a second light output from the second display region; and a lens to collect the first transmitted light and the second reflected light.