Abstract:
A display device may include a first pixel coupled to an emission control line, and an emission control stage for selectively coupling the emission control line to a first or second supply voltage line. The emission control stage may include: a first emission control transistor including a first electrode coupled to the first supply voltage line, a second electrode coupled to the emission control line, and a main gate electrode coupled to a first node; a second emission control transistor including a first electrode coupled to the emission control line, a second electrode coupled to the second supply voltage line, and a main gate electrode coupled to a second node; and a third emission control transistor including a first electrode coupled to the first supply voltage line, a second electrode coupled to the first node, a main gate electrode coupled to the second node, and a sub-gate electrode.
Abstract:
An organic light emitting diode display includes an emission control connector between a driving transistor and an organic light emitting diode of a pixel. The emission control connector connects the driving transistor and the organic light emitting diode and overlaps a portion of a repair line. A first shorting assistance member overlaps the repair line and the emission control connector, and serves to induce a chain reaction to allow a short to form between the repair line and the emission control connector when a low-energy laser beam is applied.
Abstract:
An organic light emitting diode display includes a driving transistor and a compensation transistor. The driving transistor includes a fist gate electrode disposed on a substrate, a polycrystalline semiconductor layer disposed on the first gate electrode of the driving transistor and including a first electrode, a second electrode, and a channel, and a second gate electrode disposed on the polycrystalline semiconductor layer of the driving transistor. The compensation transistor includes a polycrystalline semiconductor layer including a first electrode, a second electrode, and a channel, and a gate electrode disposed on the polycrystalline semiconductor layer of the compensation transistor.
Abstract:
A pixel includes: an organic light emitting diode; a first transistor including a gate that is connected to a first node, wherein the first transistor is connected between a second node and a third node; a second transistor including a gate that is connected to a corresponding scan line, wherein the second transistor is connected between a data line and the second node; a storage capacitor connected between the first node and a first voltage; a third transistor including a gate that is connected to the corresponding scan line, the third transistor is connected between the first node and the third node; and a fourth transistor connected between a first end of the first transistor and a second voltage.
Abstract:
A display panel may include a first OLED disposed in a first sub-pixel region and emitting light of a first color, a second OLED disposed in a second sub-pixel region and emitting light of a second color, a third OLED disposed in a third sub-pixel region and emitting light of a third color, a fourth OLED disposed in a fourth sub-pixel region and emitting light of the second color, a first sub-pixel circuit disposed in the first sub-pixel region and driving the third OLED in the third sub-pixel region, a second sub-pixel circuit disposed in the second sub-pixel region and driving the first OLED in the first sub-pixel region, a third sub-pixel circuit disposed in the third sub-pixel region and driving the fourth OLED in the fourth sub-pixel region, and a fourth sub-pixel circuit disposed in the fourth sub-pixel region and driving the second OLED in the second sub-pixel region.
Abstract:
A pixel includes: an organic light emitting diode; a first transistor including a gate that is connected to a first node, wherein the first transistor is connected between a second node and a third node; a second transistor including a gate that is connected to a corresponding scan line, wherein the second transistor is connected between a data line and the second node; a storage capacitor connected between the first node and a first voltage; a third transistor including a gate that is connected to the corresponding scan line, the third transistor is connected between the first node and the third node; and a fourth transistor connected between a first end of the first transistor and a second voltage.
Abstract:
A pixel includes: an organic light emitting diode; a first transistor including a gate that is connected to a first node, wherein the first transistor is connected between a second node and a third node; a second transistor including a gate that is connected to a corresponding scan line, wherein the second transistor is connected between a data line and the second node; a storage capacitor connected between the first node and a first voltage; a third transistor including a gate that is connected to the corresponding scan line, the third transistor is connected between the first node and the third node; and a fourth transistor connected between a first end of the first transistor and a second voltage.
Abstract:
A display device includes: a substrate including a display area and a non-display area; a transistor and a light emitting element, which are disposed on the display area; a pad portion disposed in the non-display area, where the pad portion includes a first metal pattern; and a printed circuit board or a data driver, which is connected with the pad portion. The transistor includes a semiconductor layer disposed on the substrate and a source electrode or a drain electrode which is electrically connected with the semiconductor layer. The source electrode or the drain electrode includes a first layer including a first metal, a second layer including a second metal, and a third layer including the first metal, where the first metal pattern includes the first metal, and is connected with the printed circuit board or the data driver.
Abstract:
A display device including a display panel having a first side including a display area configured to emit light and a second side opposite to the first side, an auxiliary layer disposed on the second side of the display area and including an opening, a sensor overlapping the opening and having a first surface facing the display panel, a first adhesive layer disposed between the first surface of the sensor and the display panel, and a second adhesive layer disposed between a side surface of the sensor and the auxiliary layer, in which the second adhesive layer and the first adhesive layer contact each other.
Abstract:
An organic light emitting diode display includes a flexible substrate, a semiconductor layer on the flexible substrate, and an overlapping layer. The transistor includes a driving transistor, a second transistor to transmit a data voltage transmitted through the data line to an input electrode of the driving transistor, and a third transistor including a gate electrode connected to the scan line, a first electrode connected to an output electrode of the driving transistor, and a second electrode connected to a gate electrode of the driving transistor. The third transistor includes two transistors connected in series to each other and connected to each other at a third node, the third node is formed in the semiconductor layer, an additional capacitance portion is formed in the semiconductor layer in the vicinity of the third node, and the overlapping layer overlaps the third node and the capacitance portion of the semiconductor layer.