Abstract:
Provided is an organic light-emitting display apparatus including a substrate; a first electrode formed on the substrate; an emission layer formed on the first electrode; and a second electrode formed on the emission layer, wherein the first electrode includes a first layer including silver (Ag); and a second layer disposed on the first layer and comprising oxide of non-silver metal.
Abstract:
A display apparatus includes a thin film transistor on the substrate, the thin film transistor including a first semiconductor layer and a first gate electrode overlapping the first semiconductor layer wherein a first gate insulating layer is disposed between the first semiconductor layer and the first gate electrode, and a storage capacitor including a lower electrode including a first lower layer and a first upper layer stacked each other and an upper electrode including a second lower layer and a second upper layer stacked each other, wherein the upper electrode overlaps the lower electrode, and a second gate insulating layer is disposed between the upper electrode and the lower electrode, a display element electrically connected to the thin film transistor, wherein the second upper layer has a thickness greater than a thickness of the first upper layer.
Abstract:
A method of manufacturing a display apparatus includes: forming a subpixel electrode; forming a conductive bank layer including a first opening overlapping the subpixel electrode, disposed over the subpixel electrode; forming an insulating layer between a peripheral portion of the subpixel electrode and the conductive bank layer and including an opening overlapping the first opening; forming an intermediate layer overlapping the subpixel electrode; forming an opposite electrode overlapping the subpixel electrode; continuously arranging an inorganic passivation layer-forming material on the opposite electrode and the conductive bank layer; forming, on a portion of the inorganic passivation layer-forming material, a first metal layer and a second metal layer, which overlap the first opening; and forming an inorganic passivation layer by etching a portion of the inorganic passivation layer-forming material, which does not overlap the first metal layer and the second metal layer, by using the first and second metal layers as masks.
Abstract:
A display device includes a substrate including a display area and a peripheral area surrounding the display area, a thin-film transistor disposed on the display area of the substrate, and a pixel electrode disposed on the thin-film transistor and electrically connected to the thin-film transistor. The pixel electrode includes a lower layer including titanium nitride (TiN), an intermediate layer disposed on the lower layer and including an aluminum alloy, and an upper layer disposed on the intermediate layer and including titanium oxide.
Abstract:
A conductive line for a display device may include a first layer including aluminum (Al) or an aluminum alloy, a second layer disposed on the first layer, the second layer including titanium nitride (TiNx), and a third layer disposed on the second layer, the third layer including titanium (Ti) and having a multilayer structure including a plurality of stacked sub-layers.
Abstract:
A display panel includes a base layer, a signal line which is disposed on the base layer and includes a first layer including aluminum and a second layer disposed directly on the first layer and consisting of niobium, a first thin film transistor connected to the signal line, a second thin film transistor disposed on the base layer, a capacitor electrically connected to the second thin film transistor, and a light emitting element electrically connected to the second thin film transistor.
Abstract:
A conductive line for a display device may include a first layer including aluminum (Al) or an aluminum alloy, a second layer disposed on the first layer, the second layer including titanium nitride (TiNx), and a third layer disposed on the second layer, the third layer including titanium (Ti) and having a multilayer structure including a plurality of stacked sub-layers.
Abstract:
Provided is a method for fabricating an array substrate. The method for fabricating the array substrate includes forming a semiconductor layer on a substrate, forming a gate electrode which is insulated from the semiconductor layer, forming source and drain electrodes which are insulated from the gate electrode and connected to the semiconductor layer, and forming a pixel electrode connected to the drain electrode. Here, at least one of the forming of the gate electrode, the forming of the source and drain electrodes, and the forming of the pixel electrode includes forming a conductive layer on the substrate, cooling the substrate on which the conductive layer is formed to a temperature of no greater than about 0° C., heating the cooled substrate, and patterning the conductive layer.
Abstract:
A display panel includes a substrate including a component area, a display area at least partially surrounding the component area, and a first non-display area at least partially surrounding the display area. A first wiring is in the display area and extends in a first direction to face the component area. A second wiring is in the display area and extends in the first direction to face the component area. The second wiring is spaced apart from the first wiring with the component area therebetween. A pixel circuit is connected to one of the first and second wirings and includes at least one thin-film transistor. A display element is connected to the pixel circuit. A cross-sectional area of the first wiring crossing in a second direction that is perpendicular to the first direction is different from a cross-sectional area of the second wiring crossing in the second direction.
Abstract:
A display device includes a first signal line including a first layer disposed on a substrate and containing aluminum (Al), a second layer disposed on the first layer and containing titanium nitride (TiNx), and a third layer disposed on the second layer and containing titanium (Ti), a second signal line crossing the first signal line, a first transistor including a first gate electrode connected to the first signal line and a first source electrode connected to the second signal line, and an organic light emitting diode disposed in a display area of the substrate to generate light corresponding to a data signal applied to the second signal line.