Abstract:
A touch panel with improved optical characteristics, thin-film characteristics, durability, and reliability is presented. The touch panel includes: a plurality of first sensing electrodes located on a surface of the substrate and arranged along a first direction and a plurality of second sensing electrodes arranged along a second direction intersecting the first direction; a first connector connecting the first sensing electrodes along the first direction; an insulating layer pattern which is disposed on the first connector; and a second connector which is disposed on the insulating layer pattern, intersects the first connector to be insulated from the first connector, and connects the second sensing electrodes along the second direction, wherein at least one of the first sensing electrodes includes: a first metal conductive pattern disposed on the surface of the substrate and includes a plurality of first fine metal lines; and a first transparent conductive pattern which is disposed on the first metal conductive pattern, wherein the first transparent conductive pattern includes a first portion that overlaps the first connector.
Abstract:
A touch sensor includes a base layer, first touch sensor columns, second touch sensor columns, and sensing lines. The base layer includes a sensing region and a non-sensing region. The first touch sensor columns extend in a first direction. The first touch sensor columns include first touch electrodes. The first touch electrodes include sub-touch electrodes in the sensing region. The second touch sensor columns include second touch electrodes in the sensing region. The second touch sensor columns are alternately arranged with the first touch sensor columns. The sensing lines are in the non-sensing region. The sensing lines include: first sensing lines electrically connected to the sub-touch electrodes, and second sensing lines electrically connected to the second touch electrodes. The sub-touch electrodes and the second touch electrodes have different widths.
Abstract:
Disclosed is a touch sensor device, including: a plurality of first sensing electrodes which includes a plurality of first linear electrodes extending in a first direction and a first connection electrode connecting the plurality of first linear electrodes to each other; and a plurality of second sensing electrodes which includes a plurality of second linear electrodes extending in a second direction perpendicular to the first direction and a second connection electrode connecting the plurality of second linear electrodes to each other, in which a disposition density of the plurality of first linear electrodes included in one first sensing electrode is gradually decreased from a center of the first sensing electrode to an outer side of the first sensing electrode.
Abstract:
A display device, including an upper substrate, a plurality of sense wires disposed on the upper substrate, a plurality of sense pads disposed on the upper substrate, a plurality of first connection units disposed on the upper substrate, a lower substrate, a display unit including a plurality of display elements, disposed on the lower substrate, multiplexer units disposed on the lower substrate, a touch panel driver integrated circuit connected to the multiplexer units, and conductive members electrically connecting the plurality of first connection units and the plurality of second connection units, respectively, wherein each of the plurality of sense wires is connected with each of the plurality of sense pads, and one end of each of the plurality of sense wires is connected to each of the plurality of first connection units, respectively, and the multiplexer units each include a plurality of second connection units.
Abstract:
A sensing panel includes a touch sensor that obtains information of a touch input in a sensing area, and a biometric sensor that obtains biometric information in a biometric sensing area. The touch sensor includes sensing pattern layers in the sensing area. The sensing pattern layers include cell electrodes and bridge electrodes electrically connecting the cell electrodes. The biometric sensor includes biometric sensing pattern layers in the biometric sensing area and trace lines electrically connected to the biometric sensing pattern layers. The trace lines and at least a portion of the bridge electrodes are disposed on a same layer. The trace lines bypass the bridge electrodes in a plan view.
Abstract:
A touch sensor includes: a plurality of first sensor electrode columns disposed in a sensing area, the plurality of first sensor electrode columns each including one or more first sensor electrodes; a plurality of second sensor electrode columns alternately disposed with the first sensor electrode columns in the sensing area, the plurality of second sensor electrode columns each including a plurality of second sensor electrodes having a length defined by a longitudinal axis and a width extending in a direction across the length; a plurality of lines connected to the first sensor electrode columns and the second sensor electrode columns; and a pad unit including a plurality of pads connected to the lines, wherein at least some of the second sensor electrodes have a width that varies along the longitudinal axis of its respective second electrodes.
Abstract:
A touch screen including a substrate that includes an active area and a non-active area adjacent to the active area, the active area including at least one fingerprint recognition area; touch sensing electrodes including first sensing electrodes arranged in the active area, and at least one second sensing electrode arranged in the fingerprint recognition area, the second sensing electrode configured for sensing a touch and recognizing a fingerprint; and a pad portion provided with a plurality of pads which are electrically connected to respective sensing electrodes, wherein the at least one second sensing electrode includes: a plurality of sub electrodes extending in a direction inclined with respect to an edge portion of the active area; and a plurality of fingerprint recognition lines connecting the sub electrodes to the pad portion, and the fingerprint recognition lines arranged in a same fingerprint recognition area extend in a same direction.
Abstract:
Provided herein is a display device including a display unit for displaying an image, the display unit including light emitting regions; a touch sensor arranged on a rear surface of the display unit; and a coil unit arranged on a front surface of the display unit, and including a plurality of auxiliary coils.
Abstract:
A touch sensor includes: a plurality of first sensor electrode columns disposed in a sensing area, the plurality of first sensor electrode columns each including one or more first sensor electrodes; a plurality of second sensor electrode columns alternately disposed with the first sensor electrode columns in the sensing area, the plurality of second sensor electrode columns each including a plurality of second sensor electrodes having a length defined by a longitudinal axis and a width extending in a direction across the length; a plurality of lines connected to the first sensor electrode columns and the second sensor electrode columns; and a pad unit including a plurality of pads connected to the lines, wherein at least some of the second sensor electrodes have a width that varies along the longitudinal axis of its respective second electrodes.
Abstract:
A circuit board includes a substrate and conductive patterns disposed inside or on the substrate, in which two neighboring conductive patterns are separated from each other by a gap disposed therebetween, and the conductive pattern includes first cut patterns connected to the gap and disposed toward an inside of the conductive pattern.