Abstract:
A thin film transistor substrate is provided. The thin film transistor substrate includes a display area including a plurality of pixels, wherein the pixels are connected to gate lines and data lines, a gate driver connected to the gate lines, a plurality of data pads connected to the data lines, a plurality of dummy pattern parts formed of a same layer as the gate lines, and a non-display area in which the gate driver, data pads, and dummy pattern parts are disposed, and the dummy pattern parts are disposed in an area within the non-display area where the gate driver is not disposed, and one of the dummy pattern parts is disposed overlapping with the data pads.
Abstract:
An optical sensor includes: a sensing unit including a first sensing electrode, a second sensing electrode spaced apart from the first sensing electrode, and a sensing layer between the first sensing electrode and the second sensing electrode, the sensing layer containing amorphous silicon and germanium (Ge) ions impregnated in the amorphous silicon; and an optical pattern unit on the sensing unit and including a light shielding pattern and a plurality of transmission patterns in the light shielding pattern, wherein the sensing layer includes a first region, a second region, and a third region sequentially arranged from a boundary between the second sensing electrode and the sensing layer toward the first electrode, and a concentration of the germanium (Ge) ions in the amorphous silicon is relatively higher in the second region than in the first region and the third region.
Abstract:
An exposure apparatus includes a light source, an illuminating member, a projecting member, a stage, an inspecting member, and an information processing member. The light source is configured to provide a light in accordance with a pulse event generation (PEG) representing a period of light radiation. The illuminating member is configured to change the light into point lights. The projecting member is configured to project the point lights according to a photoresist shape extending in various directions. The point lights are projected on the stage. The inspecting member is configured to inspect a photoresist pattern formed by the projected point lights. The information processing member is configured to analyze different photoresist patterns corresponding to different PEGs to select one PEG from the different PEGs. The one PEG being associated with a minimum error in the various directions.
Abstract:
An exposure system includes an exposure apparatus, a mask, a test pattern portion and a uniformity measuring part. The exposure apparatus includes a first module and a second module. The first and second modules each emit light and are overlapped in an overlapping area. The mask includes a plurality of transmission portions which are spaced apart from each other. Each of the transmission portions has a width less than a width of the overlapping area. The test pattern portion includes a plurality of test patterns which are patterned by using the light transmitted through the transmission portions of the mask. The uniformity measuring part measures a uniformity of the test patterns.
Abstract:
A display device including a pixel circuit, an insulation layer covering the pixel circuit, an etching prevention layer disposed on the insulation layer, a first guide layer, a second guide layer, a first electrode, a second electrode, and a light emitting element. The first guide layer and the second guide layer may be disposed on the etching prevention layer and spaced apart from each other. The first electrode may be disposed on the first guide layer and electrically connected to the pixel circuit. The second electrode may be disposed on the first guide layer and insulated from the first electrode. The light emitting element may be in contact with the top surface of the etching prevention layer, disposed between the first guide layer and the second guide layer on a plane, and electrically connected to the first electrode and the second electrode.
Abstract:
An organic light emitting display device may include a switching element disposed on a substrate, a planarization layer covering the switching element, a first electrode disposed on the planarization layer and coupled to the switching element, a first through hole being defined in a peripheral portion of the first electrode, a pixel defining layer covering the peripheral portion of the first electrode to expose an emission portion of the first electrode, an organic light emitting layer disposed on the emission portion of the first electrode, and a second electrode disposed on the organic light emitting layer.
Abstract:
A display device includes: a substrate; a transistor on the substrate; a light-emitting device connected to the transistor; an encapsulation layer on the light-emitting device; a sensing electrode on the encapsulation layer; a first insulating layer on the sensing electrode and including an opening; a second insulating layer on the encapsulation layer and the first insulating layer; and a third insulating layer between the first insulating layer and the second insulating layer, wherein a refractive index of the second insulating layer is greater than a refractive index of the first insulating layer.
Abstract:
A stage transferring device invention includes: a transferring stage upon which an object is mounted and which transfers the object in an x-y plane; and a stage position measuring device. The stage position measuring device includes a one-dimensional scale on the transferring stage; a one-dimensional scale reading head which is configured to overlap the one-dimensional scale, irradiate a measuring beam to the overlapped one-dimensional scale and measure a 1D y-axis coordinate of the transferring stage; a two-dimensional encoder on the transferring stage; and a two-dimensional encoder reading head which is configured to overlap the two-dimensional encoder, irradiate a measuring beam to the overlapped two-dimensional encoder and measure a 2D x-axis coordinate and a 2D y-axis coordinate of the transferring stage.
Abstract:
A method of manufacturing a display device includes: providing an outline frame on a first substrate; and providing a thin film by dropping a thin film material inside a boundary defined by the outline frame. The outline frame limits a boundary of the thin film, and the frame material of the outline frame includes a material having a surface energy that is less than a surface energy of the thin film material of the thin film.