Abstract:
Provided are a cathode active material having a suitable particle size and high uniformity, and a nickel composite hydroxide as a precursor of the cathode active material. When obtaining nickel composite hydroxide by a crystallization reaction, nucleation is performed by controlling a nucleation aqueous solution that includes a metal compound, which includes nickel, and an ammonium ion donor so that the pH value at a standard solution temperature of 25° C. becomes 12.0 to 14.0, after which, particles are grown by controlling a particle growth aqueous solution that includes the formed nuclei so that the pH value at a standard solution temperature of 25° C. becomes 10.5 to 12.0, and so that the pH value is lower than the pH value during nucleation. The crystallization reaction is performed in a non-oxidizing atmosphere at least in a range after the processing time exceeds at least 40% of the total time of the particle growth process from the start of the particle growth process where the oxygen concentration is 1 volume % or less, and with controlling an agitation power requirement per unit volume into a range of 0.5 kW/m3 to 4 kW/m3 at least during the nucleation process.
Abstract:
A positive electrode active material for a non-aqueous electrolyte secondary battery includes a lithium metal composite oxide, wherein the lithium metal composite oxide is represented by a general formula: LiaNi1-x-y-zCoxDyEzO2 (wherein, in the formula, 0.05≤x≤0.35, 0≤y≤0.35, 0.002≤z≤0.05, 1.00≤a≤1.30, an element D is at least one type of element selected from Mn, V, Mo, Nb, Ti, and W, and an element E is an element forming an alloy with lithium at a potential more noble than a potential in which ions of the element E are reduced), wherein the lithium metal composite oxide includes primary and secondary particles formed by aggregating the primary particles, wherein an oxide containing the element E exists at a surface of at least either of the primary and secondary particles.
Abstract:
Provided is a lithium composite oxide having a uniform and suitable particle size and high specific surface area due to a hollow structure that can be produced on an industrial scale. A nickel composite hydroxide as a raw material thereof is obtained controlling the particle size distribution of the nickel composite hydroxide, the nickel composite hydroxide having a structure comprising a center section that comprises minute primary particles, and an outer-shell section that exists on the outside of the center section and comprises plate shaped primary particles that are larger than the primary particles of the center section, by a nucleation process and a particle growth process that are separated by controlling the pH during crystallization, and by controlling the reaction atmosphere in each process and the manganese content in a metal compound that is supplied in each process.
Abstract:
Provided are a cathode active material having a suitable particle size and high uniformity, and a nickel composite hydroxide as a precursor of the cathode active material. When obtaining nickel composite hydroxide by a crystallization reaction, nucleation is performed by controlling a nucleation aqueous solution that includes a metal compound, which includes nickel, and an ammonium ion donor so that the pH value at a standard solution temperature of 25° C. becomes 12.0 to 14.0, after which, particles are grown by controlling a particle growth aqueous solution that includes the formed nuclei so that the pH value at a standard solution temperature of 25° C. becomes 10.5 to 12.0, and so that the pH value is lower than the pH value during nucleation. The crystallization reaction is performed in a non-oxidizing atmosphere at least in a range after the processing time exceeds at least 40% of the total time of the particle growth process from the start of the particle growth process where the oxygen concentration is 1 volume % or less, and with controlling an agitation power requirement per unit volume into a range of 0.5 kW/m3 to 4 kW/m3 at least during the nucleation process.
Abstract:
An object of the present invention is to provide nickel cobalt manganese composite hydroxide particles having a small particle diameter and a uniform particle size distribution, and a method for producing the same. A method for producing a nickel cobalt manganese composite hydroxide by a crystallization reaction is provided. The method includes: a nucleation step of performing nucleation by controlling a pH of an aqueous solution for nucleation including metal compounds containing nickel, cobalt and manganese, and an ammonium ion donor to 12.0 to 14.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard; and a particle growth step of growing nuclei by controlling a pH of an aqueous solution for particle growth containing nuclei formed in the nucleation step to 10.5 to 12.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard.
Abstract:
A transition metal composite hydroxide can be used as a precursor to allow a lithium transition metal composite oxide having a small and highly uniform particle diameter to be obtained. A method also is provided for producing a transition metal composite hydroxide represented by a general formula (1) MxWsAt(OH)2+α, coated with a compound containing the additive element, and serving as a precursor of a positive electrode active material for nonaqueous electrolyte secondary batteries. The method includes producing a composite hydroxide particle, forming nuclei, growing a formed nucleus; and forming a coating material containing a metal oxide or hydroxide on the surfaces of composite hydroxide particles obtained through the upstream step.
Abstract:
An object of the present invention is to provide nickel cobalt manganese composite hydroxide particles having a small particle diameter and a uniform particle size distribution, and a method for producing the same.[Solution] A method for producing a nickel cobalt manganese composite hydroxide by a crystallization reaction is provided. The method includes: a nucleation step of performing nucleation by controlling a pH of an aqueous solution for nucleation including metal compounds containing nickel, cobalt and manganese, and an ammonium ion donor to 12.0 to 14.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard; and a particle growth step of growing nuclei by controlling a pH of an aqueous solution for particle growth containing nuclei formed in the nucleation step to 10.5 to 12.0 in terms of the pH as measured at a liquid temperature of 25° C. as a standard.
Abstract:
A transition metal composite hydroxide can be used as a precursor to allow a lithium transition metal composite oxide having a small and highly uniform particle diameter to be obtained. A method also is provided for producing a transition metal composite hydroxide represented by a general formula (1) MxWsAt(OH)2+α, coated with a compound containing the additive element, and serving as a precursor of a positive electrode active material for nonaqueous electrolyte secondary batteries. The method includes producing a composite hydroxide particle, forming nuclei, growing a formed nucleus; and forming a coating material containing a metal oxide or hydroxide on the surfaces of composite hydroxide particles obtained through the upstream step.
Abstract:
Provided are a cathode active material having a suitable particle size and high uniformity, and a nickel composite hydroxide as a precursor of the cathode active material. When obtaining nickel composite hydroxide by a crystallization reaction, nucleation is performed by controlling a nucleation aqueous solution that includes a metal compound, which includes nickel, and an ammonium ion donor so that the pH value at a standard solution temperature of 25° C. becomes 12.0 to 14.0, after which, particles are grown by controlling a particle growth aqueous solution that includes the formed nuclei so that the pH value at a standard solution temperature of 25° C. becomes 10.5 to 12.0, and so that the pH value is lower than the pH value during nucleation. The crystallization reaction is performed in a non-oxidizing atmosphere at least in a range after the processing time exceeds at least 40% of the total time of the particle growth process from the start of the particle growth process where the oxygen concentration is 1 volume % or less, and with controlling an agitation power requirement per unit volume into a range of 0.5 kW/m3 to 4 kW/m3 at least during the nucleation process.
Abstract:
A transition metal composite hydroxide can be used as a precursor to allow a lithium transition metal composite oxide having a small and highly uniform particle diameter to be obtained. A method also is provided for producing a transition metal composite hydroxide represented by a general formula (1) MxWsAt(OH)2+α, coated with a compound containing the additive element, and serving as a precursor of a positive electrode active material for nonaqueous electrolyte secondary batteries. The method includes producing a composite hydroxide particle, forming nuclei, growing a formed nucleus; and forming a coating material containing a metal oxide or hydroxide on the surfaces of composite hydroxide particles obtained through the upstream step.