Abstract:
A control apparatus comprising a processor, a memory, and a communication circuit configured to communicate with an input apparatus is provided. The memory device stores instructions which when executed by the processor, causes the processor to receive displacement information from the input apparatus, and generate a displacement value for displacing an operation target on a display based on the displacement information, wherein a first set of instructions is used to calculate the displacement value if the displacement information is within a predetermined range, and a second set of instructions is used to calculate the displacement value if the displacement information is outside the predetermined range; and transmit a feedback signal to the input apparatus at a timing based on the displacement information, wherein the timing is calculated differently if the displacement information is within the predetermined range than if the displacement information is outside the predetermined range.
Abstract:
A card is provided comprising an information setting unit configured to output a first signal including unique information of the card, and a bending sensor configured to output a second signal corresponding to a curvature of the card. An information processing apparatus is also provided comprising a card reading unit configured to acquire information from a card a processor, and a memory device. The memory device stores instructions which when executed by the processor, causes the processor to acquire unique information from the card, and acquire curvature information from the card corresponding to a curvature of the card.
Abstract:
A control apparatus comprising a processor, a memory, and a communication circuit configured to communicate with an input apparatus is provided. The memory device stores instructions which when executed by the processor, causes the processor to receive displacement information from the input apparatus, and at least one of: (i) generate a displacement value for displacing an operation target on a display based on the displacement information, wherein a first set of instructions is used to calculate the displacement value if the displacement information is within a predetermined range, and a second set of instructions is used to calculate the displacement value if the displacement information is outside the predetermined range; and (ii) transmit a feedback signal to the input apparatus at a timing based on the displacement information, wherein the timing is calculated differently if the displacement information is within the predetermined range than if the displacement information is outside the predetermined range.
Abstract:
A card is provided comprising an information setting unit configured to output a first signal including unique information of the card, and a bending sensor configured to output a second signal corresponding to a curvature of the card. An information processing apparatus is also provided comprising a card reading unit configured to acquire information from a card a processor, and a memory device. The memory device stores instructions which when executed by the processor, causes the processor to acquire unique information from the card, and acquire curvature information from the card corresponding to a curvature of the card.
Abstract:
There is provided an input device including a plurality of electrodes that are arranged on a surface of a body in a direction crossing a muscular fiber group of the body at a right angle, and detect electromyogram signals generated from the muscular fiber group according to a motion performed by the body; a switch unit that switches an electrode acquiring an electromyogram signal between the plurality of electrodes; and a control unit that selects an electrode detecting an electromyogram signal for identifying the motion from among the plurality of electrodes.
Abstract:
An input device includes an operation portion configured to receive an input operation made by a user, a vibration portion configured to vibrate the operation portion, a detection portion configured to detect the input operation, and a controller configured to determine a vibration condition of the vibration portion based on the input operation detected by the detection portion and present an elastic sense to the user by driving the vibration portion under the determined vibration condition.
Abstract:
A pointing device includes a casing, a tactile sense presentation section, and a sensor section. The sensor section detects an operation for the casing and outputs an operation signal for controlling a movement of a pointer on a screen. The control apparatus includes an area setting section and a signal generation section. The area setting section sets a first area that belongs to an inside of a display area of an object on the screen, a second area that belongs to an outside of the display area of the object, and a third area that belongs to a boundary portion between the first area and the second area. The signal generation section calculates a position of the pointer based on the operation signal to generate, when the pointer is located in the first area, a control signal by which the tactile sense presentation section is driven in a first drive mode and generates, when the pointer is located in the third area, a control signal by which the tactile sense presentation section is driven in a second drive mode.
Abstract:
There is provided a camera module including: a lens; an image pickup device arranged on an optical axis of the lens; and an actuator section configured to reciprocate the image pickup device in an optical axis direction of the lens, wherein the actuator section includes a movable joint section on which the image pickup device is fixed, a parallel link mechanism section having a movable end section attached to the movable joint section and a mounting end section, and a movable element that is configured to perform displacement motion by a displacement amount depending on a level of a voltage to be applied and that is coupled to a coupling region between the movable joint section and the movable end section of the parallel link mechanism section in such a manner that the displacement motion is transmittable.
Abstract:
A pointing device includes a casing, a tactile sense presentation section, and a sensor section. The sensor section detects an operation for the casing and outputs an operation signal for controlling a movement of a pointer on a screen. The control apparatus includes an area setting section and a signal generation section. The area setting section sets a first area that belongs to an inside of a display area of an object on the screen, a second area that belongs to an outside of the display area of the object, and a third area that belongs to a boundary portion between the first area and the second area. The signal generation section calculates a position of the pointer based on the operation signal to generate, when the pointer is located in the first area, a control signal by which the tactile sense presentation section is driven in a first drive mode and generates, when the pointer is located in the third area, a control signal by which the tactile sense presentation section is driven in a second drive mode.
Abstract:
A control apparatus comprising a processor, a memory, and a communication circuit configured to communicate with an input apparatus is provided. The memory device stores instructions which when executed by the processor, causes the processor to receive displacement information from the input apparatus, and at least one of: (i) generate a displacement value for displacing an operation target on a display based on the displacement information, wherein a first set of instructions is used to calculate the displacement value if the displacement information is within a predetermined range, and a second set of instructions is used to calculate the displacement value if the displacement information is outside the predetermined range; and (ii) transmit a feedback signal to the input apparatus at a timing based on the displacement information, wherein the timing is calculated differently if the displacement information is within the predetermined range than if the displacement information is outside the predetermined range.