Abstract:
A coding and modulation apparatus and method are presented, particularly for use in a system according to IEEE 802.11. The apparatus comprises an encoder configured to encode input data into cell words according to a low density parity check code, LDPC, and a modulator configured to modulate said cell words into constellation values of a non-uniform constellation and to assign bit combinations to constellation values of the used non-uniform constellation, wherein said modulator is configured to use, based on the total number N of constellation points of the constellation and the code rate R, a particular non-uniform constellation, which has been optimized using the peak-to-average power ratio (PAPR).
Abstract:
A method for analyzing appliances in a power line network comprises obtaining an electrical characteristic of the power line network, using a sensor that is connected to the power line network, extracting a line-neglecting feature from the electrical characteristic of the power line network, and detecting an appliance connected to the power line network based on the extracted line-neglecting feature.
Abstract:
A receiver apparatus receives a transmit signal through a plurality of transmission channels, wherein each transmission channel is described by its channel vector. A sparseness evaluation unit (127) may obtain a sparseness measure containing sparseness information for previously estimated frequency-domain channel vectors. From the plurality of receive signals, an estimator unit (120) estimates updated channel vectors for the transmission channels by applying an iterative blind channel estimation algorithm that may consider a change of the sparseness measure, out-of-band energy information and/or signal-to-noise information and cross-relations between pairs of receive signals. A combining unit (130) may combine the receive signals on the basis of combining coefficients derived from the estimated channel impulse responses for a pre-selected diversity combining scheme to obtain a combined receive signal representing an estimation of the transmit signal. The receiver apparatus employs an improved blind channel estimation approach.
Abstract:
A method for determining a location of a client device in a wireless network including the client device and at least three network devices, each of the three network devices having a known location comprises a pairwise exchanges of messages between at least three different pairs of network devices of said at least three network devices. In the pairwise exchange messages, wherein in a pairwise message exchange time difference information of the time difference between reception of a message and subsequent transmission of a message is included. This time difference information is used in the determination of the location of the client device.
Abstract:
A method for determining a location of a client device in a wireless network including the client device and at least three network devices, each of the three network devices having a known location comprises a pairwise exchanges of messages between at least three different pairs of network devices of said at least three network devices. In the pairwise exchange messages, wherein in a pairwise message exchange time difference information of the time difference between reception of a message and subsequent transmission of a message is included. This time difference information is used in the determination of the location of the client device.
Abstract:
Communication devices and corresponding methods for RF-based communication and position determination are disclosed. An initiator communication device (1) comprises an antenna unit (10) configured to transmit and receive RF signals, a beamforming unit (11) configured to perform beamforming and to control the antenna unit to transmit and/or receive RF signals using one or more selected beams, a control unit (12) configured to control the beamforming unit (11) in a training phase to perform beamforming for determining an initiator line of sight, LOS, beam to a responder communication device (2), and a processing unit (13) configured to determine the initiator LOS beam and/or initiator angular information of the initiator LOS beam and to determine the position of said communication device using the determined initiator LOS beam and/or initiator angular information in a measurement phase.
Abstract:
A position determination device, for example for indoor positioning, includes data input circuitry configured to obtain at least one magnetic field vector sensed by a magnetic sensor, data processor circuitry configured to determine the magnetic magnitude and a further magnetic parameter of the at least one obtained magnetic field vector, comparison circuitry configured to compare the determined magnetic magnitude with a predetermined magnetic magnitude map of a region around the magnetic sensor to obtain a first estimate of the sensor position and to compare the determined further magnetic parameter with a corresponding predetermined further parameter map of a region around the magnetic sensor to obtain a second estimate of the sensor position, and position determination circuitry configured to weight the first and second estimates of the sensor position according to determined weight information and to determine the sensor position from the weighted first and second estimates.
Abstract:
A method for analyzing appliances in a power line network, comprises obtaining an electrical characteristic of the power line network, using a sensor that is connected to the power line network, and detecting an appliance connected to the power line network on the basis of the electrical characteristic of the power line network and a model profile. The model profile is based on electrical characteristics of one or more candidate appliances and on a configuration of the power line network.