Abstract:
To operate electrical devices, power consumptions of all the electrical devices are continually captured and assigned to the individual electrical devices and at least one desired result is achieved by virtue of at least a first control instance of the electrical devices, the operation of which helps to achieve a desired result, and a second control instance of the electrical devices, the operation of which likewise helps to achieve the desired result. The devices are operated in a coordinated fashion. To this end, measured values from multiple measured value transmitters are captured by operating the multiple electrical devices. Correlations between changes in the measured values of the individual measured value transmitters over time and changes in the power consumptions of the individual electrical devices over time are determined and the desired result is selected from a subgroup of results.
Abstract:
A method for logging a user into a device for a power generation plant, using a service gateway, wherein an access authorization of the user for the device is stored on the service gateway, is disclosed. The method includes authenticating the user on the service gateway, sending a device access request using an access device from the user to the service gateway specifying an identifier of the device for the power generation plant, and comparing a device secret stored on the service gateway with a copy of the device secret generated using the device secret and stored on the device, via an SRP protocol.
Abstract:
A method of communication of distributed devices handling electric energy with communication partners via the Internet includes programming rules in a server. The rules determine between which device and which communication partner a communication connection is to be mediated based on generic properties of the devices, generic properties of the communication partners and an initializing time-variable datum. The communication connection is a point to point, point to multi point or multi point to multi point connection via the internet. Data are transmitted from each device and each communication partner to the server via the Internet. These data include both a communication address and attributes indicative of the generic properties of the device or the communication partner, respectively. The communication connection is mediated between the device and the communication partner determined by the rules in response to a value of the initializing time-variable datum also defined by the rules.
Abstract:
A method for the communication of system control units with multiple energy generating systems includes receiving request data from the system control units and system data from the energy generating systems at a common gateway, managing the system data and processing the request data in the gateway, and sending control commands to the energy generating systems and/or data responses to the system control units via the gateway. The request data and/or the system data are received in at least two different data models at the gateway, and translated from their respective data models into a metadata model. The translated system data are managed and the translated request data are processed in the gateway, resulting in data responses and/or control commands in the metadata model that are translated back into the data models of the specific system control units and/or energy generating systems, and transmitted to them by the gateway.
Abstract:
A method of communication of distributed devices handling electric energy with communication partners via the Internet includes programming rules in a server. The rules determine between which device and which communication partner a communication connection is to be mediated based on generic properties of the devices, generic properties of the communication partners and an initializing time-variable datum. The communication connection is a point to point, point to multi point or multi point to multi point connection via the internet. Data are transmitted from each device and each communication partner to the server via the Internet. These data include both a communication address and attributes indicative of the generic properties of the device or the communication partner, respectively. The communication connection is mediated between the device and the communication partner determined by the rules in response to a value of the initializing time-variable datum also defined by the rules.
Abstract:
A method for defining authentication data of a user at an energy conversion device connected to a grid and a source via a network connection includes receiving at the energy conversion device, via the network connection, a request from the user to newly assign authentication data, receiving at the energy conversion device desired authentication data of the user via the network connection, and storing the desired authentication data in the energy conversion device for an authentication of the user in the event of subsequent attempts to access the energy conversion device, when the energy conversion device is disconnected from the connected grid within a first predefined time window after receiving the request.
Abstract:
To operate electrical devices, power consumptions of all the electrical devices are continually captured and assigned to the individual electrical devices and at least one desired result is achieved by virtue of at least a first control instance of the electrical devices, the operation of which helps to achieve a desired result, and a second control instance of the electrical devices, the operation of which likewise helps to achieve the desired result. The devices are operated in a coordinated fashion. To this end, measured values from multiple measured value transmitters are captured by operating the multiple electrical devices. Correlations between changes in the measured values of the individual measured value transmitters over time and changes in the power consumptions of the individual electrical devices over time are determined and the desired result is selected from a subgroup of results.
Abstract:
A method for the communication of system control units with a plurality of spatially distributed energy generating systems, which jointly feed into a continuous supply network for electrical energy, includes receiving request data from the system control units and system data from the energy generating systems at a gateway that is operating as a common gateway, managing the system data in the gateway and processing the request data in the gateway, and sending control commands to the energy generating systems and/or data responses to the system control units that result from the processing of the request data via the gateway. The method also includes receiving the request data in at least two different data models of the individual system control units and/or receiving the system data in at least two different data models of the individual energy generating systems at the gateway, translating the request data and the system data from their respective data models into a metadata model in the gateway; and managing the translated system data in the gateway and processing the translated request data in the gateway, wherefrom data responses compiled from system data to specific system control units and/or control commands to specific energy generating systems result in the metadata model. Lastly, the method includes translating the data responses and/or control commands from the metadata model into the data models of the specific system control units and/or energy generating systems in the gateway, and transmitting the translated data responses and/or control commands by the gateway to the specific system control units and/or energy generating systems.