Abstract:
An active metasurface includes a number of periodically-repeated unit cells arranged on a substrate, each of the unit cells including a high-index dielectric block; a heat source positioned to selectively modulate heat applied to the high-index dielectric block; and an insulating undercut region at an interface between the high-index dielectric block and the substrate.
Abstract:
A device includes a controller with a processor and memory with instructions for controlling power to a light source such that the light source emits a frequency-modulated continuous light beam that, over time, includes an up region, a down region, and a flat region. The up region includes increasing a frequency of the continuous light beam, the down region includes decreasing the frequency of the continuous light beam, and the flat region includes maintaining the frequency of the continuous light beam at a constant frequency.
Abstract:
An apparatus includes a detector, a light source configured to emit light, a reflecting apparatus having multiple reflective facets, and a mirror. The reflecting apparatus is configured to rotate around an axis and arranged to reflect the emitted light from the light source and reflect backscattered light. The mirror is arranged to reflect the backscattered light from the reflecting apparatus towards the detector.
Abstract:
An apparatus includes a detector, a light source configured to emit light, a plurality of disks, and a focusing apparatus. Each disk includes a set of prisms, and each disk is independently rotatable, arranged to receive the emitted light directly or indirectly from the light source, and arranged to receive backscattered light from an object. The focusing apparatus is arranged to focus the backscattered light from the plurality of disks towards the detector.
Abstract:
A light source is configured to produce light, a waveguide is optically coupled to the light source and configured to direct the light to an intended focus location, and a slider is configured to use the light as an energy source for heating a region of a magnetic recording medium. A thermal sensor is situated on the slider at a location outside of a light path that includes the intended focus location. The thermal sensor is configured for sensing a short time constant change in temperature resulting from light source heating of the thermal sensor, wherein the sensed change in thermal sensor temperature is representative of optical intensity of the light delivered to the intended focus location.
Abstract:
An apparatus is includes a near field transducer positioned adjacent a media-facing surface and at the end of a waveguide having at least one core layer and a cladding layer. The apparatus also includes at least one optical reflector positioned adjacent opposing cross-track edges of the near field transducer and/or adjacent a down-track side of the near-field transducer.
Abstract:
A light source is configured to produce light, a waveguide is optically coupled to the light source and configured to direct the light to an intended focus location, and a slider is configured to use the light as an energy source for heating a region of a magnetic recording medium. A thermal sensor is situated on the slider at a location outside of a light path that includes the intended focus location. The thermal sensor is configured for sensing a short time constant change in temperature resulting from light source heating of the thermal sensor, wherein the sensed change in thermal sensor temperature is representative of optical intensity of the light delivered to the intended focus location.
Abstract:
Systems, devices, and methods may use input/output (I/O) apparatus and an optical switching medium to switch, or route, optical data signals. The optical switching medium may include a plurality of optical switching regions. The I/O apparatus may transmit optical data signals to and receive optical data signals from the optical switching medium to provide switching functionality.
Abstract:
An apparatus includes a detector and a light source configured to emit light. The apparatus further includes a disk with a set of prisms and that is configured to rotate, arranged to receive and direct the emitted light, and arranged to receive and direct backscattered light. The apparatus further includes a reflecting apparatus with multiple reflective facets and configured to rotate, arranged to reflect the emitted light, and arranged to reflect the backscattered light. A focusing apparatus is arranged to focus the backscattered light from the disk towards the detector.
Abstract:
A device includes a light splitter configured to receive a source light beam from a light source and split the source light beam into separate light beams, each emitted through an outlet. The device also includes resonators, each of which is optically coupled to at least one of the outlets and is configured to steer at least one of the light beams.