Abstract:
An apparatus comprises a slider of a magnetic recording head having an air bearing surface (ABS), a write pole terminating at or near the ABS, and a near-field transducer (NFT) adjacent the write pole. A light delivery arrangement extends through the slider and terminates at the ABS. The light delivery arrangement is configured to communicate light through the slider and to the NFT. A transparent heat sink layer abuts a terminal end portion of the light delivery arrangement and terminates at the ABS. The heat sink layer has a thermal conductivity greater than that of the light delivery arrangement.
Abstract:
An apparatus has a near-field transducer located proximate a media-facing surface of a slider magnetic recording heat. A waveguide is configured to couple light to the near-field transducer and includes a top cladding layer facing the near-field transducer, a bottom cladding layer, and a core layer between the top and bottom cladding layers. The apparatus includes a write pole with a flat portion substantially parallel to the core layer and a sloped portion extending from the flat portion of the write pole towards the media-facing surface at an angle to the core layer and to the media-facing surface. A light mitigation layer is located between the top cladding layer and the write pole.
Abstract:
An apparatus comprises a slider having an air bearing surface (ABS), a leading edge, and a trailing edge opposing the leading edge. A writer having a write pole is situated at or near the ABS. A near-field transducer (NFT) is situated at or near the ABS and between the write pole and the leading edge of the slider. An optical waveguide is configured to couple light from a laser source to the NFT. A contact sensor is situated between the write pole and the trailing edge. The contact sensor comprises a first ABS section situated at or near the ABS, a secondABS section situated at or near the ABS and spaced apart from the first ABS in a cross-track direction by a gap, and a distal section extending away from the ABS and connecting the first ABS section with the second ABS section.
Abstract:
An apparatus comprises a slider having an air bearing surface (ABS), a leading edge, and a trailing edge opposing the leading edge. A writer having a write pole is situated at or near the ABS. A near-field transducer (NFT) is situated at or near the ABS and between the write pole and the leading edge of the slider. An optical waveguide is configured to couple light from a laser source to the NFT. A contact sensor is situated between the write pole and the trailing edge. The contact sensor comprises a first ABS section situated at or near the ABS, a secondABS section situated at or near the ABS and spaced apart from the first ABS in a cross-track direction by a gap, and a distal section extending away from the ABS and connecting the first ABS section with the second ABS section.
Abstract:
An apparatus comprises a thermal sensor configured to interact with a magnetic recording disk. A head-disk interface is defined between the thermal sensor and the disk. A power supply is coupled to the thermal sensor and configured to supply a bias power to the thermal sensor between a low power and a high power. A processor is coupled to the thermal sensor and configured to determine a slope of a resistance response of the thermal sensor. The processor is further configured to detect a change in the slope relative to a baseline slope. The slope change indicates increased heat sinking between the thermal sensor and the disk due to the presence of contaminant buildup at the head-disk interface.
Abstract:
A sensor supported by a head transducer has a temperature coefficient of resistance (TCR) and a sensor resistance. The sensor operates at a temperature above ambient and is responsive to changes in sensor-medium spacing. Conductive contacts connected to the sensor have a contact resistance and a cross-sectional area adjacent to the sensor larger than that of the sensor, such that the contact resistance is small relative to the sensor resistance and negligibly contributes to a signal generated by the sensor. A multiplicity of head transducers each support a TCR sensor and a power source can supply bias power to each sensor of each head to maintain each sensor at a fixed temperature above an ambient temperature in the presence of heat transfer changes impacting the sensors. A TCR sensor of a head transducer can include a track-oriented TCR sensor wire for sensing one or both of asperities of the medium.
Abstract:
A light source is configured to produce light, a waveguide is optically coupled to the light source and configured to direct the light to an intended focus location, and a slider is configured to use the light as an energy source for heating a region of a magnetic recording medium. A thermal sensor is situated on the slider at a location outside of a light path that includes the intended focus location. The thermal sensor is configured for sensing a short time constant change in temperature resulting from light source heating of the thermal sensor, wherein the sensed change in thermal sensor temperature is representative of optical intensity of the light delivered to the intended focus location.
Abstract:
An apparatus comprises a slider having an air bearing surface (ABS), a leading edge, and a trailing edge opposing the leading edge. A writer having a write pole is situated at or near the ABS. A near-field transducer (NFT) is situated at or near the ABS and between the write pole and the leading edge of the slider. An optical waveguide is configured to couple light from a laser source to the NFT. A contact sensor is situated between the write pole and the trailing edge. The contact sensor comprises a first ABS section situated at or near the ABS, a second ABS section situated at or near the ABS and spaced apart from the first ABS in a cross-track direction by a gap, and a distal section extending away from the ABS and connecting the first ABS section with the second ABS section.
Abstract:
A sensor supported by a head transducer has a temperature coefficient of resistance (TCR) and a sensor resistance. The sensor operates at a temperature above ambient and is responsive to changes in sensor-medium spacing. Conductive contacts connected to the sensor have a contact resistance and a cross-sectional area adjacent to the sensor larger than that of the sensor, such that the contact resistance is small relative to the sensor resistance and negligibly contributes to a signal generated by the sensor. A multiplicity of head transducers each support a TCR sensor and a power source can supply bias power to each sensor of each head to maintain each sensor at a fixed temperature above an ambient temperature in the presence of heat transfer changes impacting the sensors. A TCR sensor of a head transducer can include a track-oriented TCR sensor wire for sensing one or both of asperities of the medium.
Abstract:
A sensor supported by a head transducer has a temperature coefficient of resistance (TCR) and a sensor resistance. The sensor operates at a temperature above ambient and is responsive to changes in sensor-medium spacing. Conductive contacts connected to the sensor have a contact resistance and a cross-sectional area adjacent to the sensor larger than that of the sensor, such that the contact resistance is small relative to the sensor resistance and negligibly contributes to a signal generated by the sensor. A multiplicity of head transducers each support a TCR sensor and a power source can supply bias power to each sensor of each head to maintain each sensor at a fixed temperature above an ambient temperature in the presence of heat transfer changes impacting the sensors. A TCR sensor of a head transducer can include a track-oriented TCR sensor wire for sensing one or both of asperities of the medium.