Abstract:
A magnetic head includes a read transducer and a write transducer at a media-facing surface of the magnetic head. The magnetic head includes at least one heater that causes heat deformation at the media-facing surface in response to different first and second energizing currents. The first energizing current results in a first close point between the media-facing surface and a recording medium. The second energizing current results in a second close point between the media-facing surface and the recording medium. The second close point is at a different location in the media-facing surface than the first close point.
Abstract:
An apparatus includes a solid immersion mirror with opposing, reflective, inner sidewalls having inner surfaces facing a focal region and outer surfaces opposite the inner surfaces. The solid immersion mirror also include opposing outer sidewalls spaced apart from and facing the outer surfaces of the inner sidewalls, and a fill material between the inner sidewalls and outer sidewalls. The apparatus also includes a near-field transducer located in the focal region proximate a media-facing surface.
Abstract:
A media-facing surface of a magnetic head is positioned proximate a moving magnetic recording medium. A current is applied to an electromagnet of the magnetic head. The current induces a magnetic force between the magnetic head and the magnetic recording medium that adjusts a clearance therebetween.
Abstract:
An apparatus is includes a near field transducer positioned adjacent a media-facing surface and at the end of a waveguide having at least one core layer and a cladding layer. The apparatus also includes at least one optical reflector positioned adjacent opposing cross-track edges of the near field transducer and/or adjacent a down-track side of the near-field transducer.
Abstract:
An apparatus includes a waveguide and a near-field transducer adjacent the waveguide. The near-field transducer includes an enlarged region and a peg region extending from the enlarged region towards an air bearing surface. A write pole is adjacent the near-field transducer and include a first portion having an edge extending towards the air bearing surface at a non-orthogonal angle with respect to the air bearing surface. A second portion of the write pole extends orthogonally to the air bearing surface and is in contact with the first portion. The apparatus includes an insulator-filled gap at the air bearing surface between the second portion of the write pole and the peg region of the near-field transducer. The gap is bounded away from the air bearing surface by the enlarged region of the near-field transducer.
Abstract:
An apparatus includes a solid immersion mirror with opposing, reflective, inner sidewalls having inner surfaces facing a focal region and outer surfaces opposite the inner surfaces. The solid immersion mirror also include opposing outer sidewalls spaced apart from and facing the outer surfaces of the inner sidewalls, and a fill material between the inner sidewalls and outer sidewalls. The apparatus also includes a near-field transducer located in the focal region proximate a media-facing surface.
Abstract:
An apparatus includes a waveguide and a near-field transducer adjacent the waveguide. The near-field transducer includes an enlarged region and a peg region extending from the enlarged region towards an air bearing surface. A write pole is adjacent the near-field transducer and include a first portion having an edge extending towards the air bearing surface at a non-orthogonal angle with respect to the air bearing surface. A second portion of the write pole extends orthogonally to the air bearing surface and is in contact with the first portion. The apparatus includes an insulator-filled gap at the air bearing surface between the second portion of the write pole and the peg region of the near-field transducer. The gap is bounded away from the air bearing surface by the enlarged region of the near-field transducer.
Abstract:
An apparatus comprises a write transducer comprising a write pole having a tip portion proximate a media-facing surface and a return pole spaced apart from the write pole in a downtrack direction. The apparatus further includes first and second heat sink portions. The first heat sink portion surrounds a first side of the tip portion that faces the return pole and extends outwards from the tip portion in a cross-track direction. The second heat sink portion comprises a first surface proximate the first heat sink portion and a second surface proximate the return pole and extends outwards in the cross-track direction further than the first heat sink portion.
Abstract:
An apparatus includes a solid immersion mirror with opposing, reflective, inner sidewalls having inner surfaces facing a focal region and outer surfaces opposite the inner surfaces. The solid immersion mirror also include opposing outer sidewalls spaced apart from and facing the outer surfaces of the inner sidewalls, and a fill material between the inner sidewalls and outer sidewalls. The apparatus also includes a near-field transducer located in the focal region proximate a media-facing surface.
Abstract:
An apparatus has a near-field transducer located proximate a media-facing surface of a slider magnetic recording heat. A waveguide is configured to couple light to the near-field transducer and includes a top cladding layer facing the near-field transducer, a bottom cladding layer, and a core layer between the top and bottom cladding layers. The apparatus includes a write pole with a flat portion substantially parallel to the core layer and a sloped portion extending from the flat portion of the write pole towards the media-facing surface at an angle to the core layer and to the media-facing surface. A light mitigation layer is located between the top cladding layer and the write pole.