摘要:
A nonaqueous electrolyte secondary battery includes a current interruption mechanism in at least one of a conductive pathway from the positive electrode sheet to the outside of the outer body and a conductive pathway from the negative electrode sheet to the outside of the outer body. The current interruption mechanism interrupts electric current when the pressure in the outer body exceeds a predetermined value. The nonaqueous electrolyte contains an overcharge inhibitor. The overcharge inhibitor is contained in an amount of 3.0% or more and 4.5% or less with respect to the spatial volume in the outer body in terms of volume ratio. The nonaqueous electrolyte secondary battery has excellent output characteristics in a low temperature condition and can sufficiently ensure reliability even when the battery is overcharged through two-step charging in a low temperature condition.
摘要:
Provided is a sealed battery with improved safety and reliability in which no spark discharge or voltage recovery occurs after a current interrupt mechanism has been actuated. A sealed battery 10 includes a current interrupt mechanism 40: having an inversion plate 50 and a collector 60. The collector 60 and the inversion plate 50 are electrically and mechanically joined in the easily breakable section 61 and the inversion section 51, the easily breakable section 61 is broken and displaced together with the inversion section 51 by the displacement of the inversion section 51, and the electric connection of the collector 60 and the inversion plate 50 is interrupted. The distance between the collector 60 and the easily breakable section 61 after the displacement is within a range of 0.3 mm to 1.5 mm.
摘要:
A high-reliability prismatic secondary battery with a current interruption mechanism that is unlikely to be damaged even if the battery is subjected to shock is provided. The prismatic secondary battery includes a second insulating member having a first through-hole, the second insulating member being arranged between a first region of a positive electrode collector and an inversion plate. The first region of the positive electrode collector and the inversion plate are electrically connected to each other through the first through-hole. The second insulating member has a plurality of fixing pawl portions. The fixing pawl portions are hooked and fixed to a fixing portion formed on the outer surface side of the conductive member.
摘要:
A high-reliability prismatic secondary battery with a current interruption mechanism that is unlikely to be damaged even if the battery is subjected to shock is provided. The prismatic secondary battery includes a second insulating member having a first through-hole, the second insulating member being arranged between a first region of a positive electrode collector and an inversion plate. The first region of the positive electrode collector and the inversion plate are electrically connected to each other through the first through-hole. The second insulating member has a plurality of fixing pawl portions. The fixing pawl portions are hooked and fixed to a fixing portion formed on the outer surface side of the conductive member.
摘要:
A method for manufacturing a nonaqueous electrolyte secondary battery including a current interruption mechanism that interrupts electric current includes disposing, in the outer body, an electrode assembly and a nonaqueous electrolyte containing a compound having at least one of a cyclohexyl group and a phenyl group, adjusting the nonaqueous electrolyte to contain the compound having at least one of a cyclohexyl group and a phenyl group in an amount of from 2.5 g/m2 to 5.0 g/m2 with respect to a formation area of a positive electrode active material layer on a positive electrode substrate surface, and thereafter performing aging treatment at 60° C. or more at a state of charge of 60% or more. This battery exhibits excellent output characteristics in a low temperature condition and can sufficiently ensure reliability even when the battery is overcharged through two-step charging in a low temperature condition.
摘要翻译:包括具有中断电流的电流中断机构的非水电解质二次电池的制造方法包括在外体中设置电极组件和含有具有环己基和苯基中的至少一个的化合物的非水电解质,调整 含有相对于正极上的正极活性物质层的形成面积为2.5g / m 2〜5.0g / m 2的环己基和苯基中的至少一种的化合物的非水电解质 基板表面,然后在60%以上的电荷下进行60℃以上的时效处理。 该电池在低温条件下表现出优异的输出特性,并且即使当在低温条件下通过两步充电来对电池进行过充电时也可充分确保可靠性。
摘要:
(a) A battery including a power storage element and an electrolytic solution is assembled. (b) Initial charging is performed on the battery. (c) Alternate charging and discharging are performed on the battery after the initial charging. In the alternate charging and discharging, charging and discharging are alternately performed once or more respectively at a voltage between 4.0 V and 4.1 V and a current rate of 0.6 C or higher. The total number of times of charging and discharging is 3 or greater. The charging is performed such that the voltage changes by 0.05 V or higher and 0.1 V or lower whenever the charging is performed once. The discharging is performed such that the voltage changes by 0.05 V or higher and 0.1 V or lower whenever the discharging is performed once.
摘要:
Provided is a nonaqueous electrolyte secondary cell in which heat generation is suppressed. The nonaqueous electrolyte secondary cell according to the invention has a positive electrode including positive electrode active material particles and a negative electrode including negative electrode active material particles. The negative electrode active material particles are carbon-black-adhered carbon-based negative electrode active material particles which are constituted by a carbon material having a graphite structure in at least part thereof and which have carbon black (CB) particles that have adhered to at least part of a surface portion. The positive electrode active material particles are of a hollow structure having a shell and a hollow portion. The average short diameter A of the CB particles in the carbon-black-adhered carbon-based negative electrode active material particles and an average inner diameter B of the hollow portions in the positive electrode active material particles fulfill the relationship: 1.2≦B/A≦260.