Abstract:
There are provided an apparatus and a method for measuring pulse waves. The pulse wave measuring apparatus includes a receiver configured to receive pulse wave signals sensed at at least two points of an object; an analog signal processor configured to amplify a voltage difference between two pulse wave signals from among the received pulse wave signals and integrate the amplified voltage difference; and a digital signal processor configured to analog to digital convert a value of the integrated amplified voltage difference and obtain, from the converted value, a pulse transit time between the two points corresponding to the two pulse wave signals.
Abstract:
Provided are biological information detection apparatuses and methods of detecting biological information. The biological information detection apparatus includes a pulse wave measuring unit configured to detect a biological signal of a subject; a height controller configured to adjust a height of the pulse wave measuring unit; and a support member formed on a side of the height controller, wherein the pulse wave measuring unit is further configured to detect the biological signal while the pulse wave measuring unit is spaced apart from a surface skin of the subject by the adjusted height.
Abstract:
A touch panel apparatus for sensing a biosignal and a method of acquiring information about respiration of a user by the touch panel apparatus are provided. The touch panel apparatus includes a touch panel configured to sense a biosignal of a user based on a touch input through the touch panel; a detector configured to detect a respiratory signal from the biosignal; and a processor configured to acquire information about respiration of the user based on characteristics of the detected respiratory signal.
Abstract:
An apparatus for detecting biometric information of a living body detects a pulse wave and extracts the biometric information of the living body in a non-invasive method. The apparatus for detecting biometric information includes a surface pulse wave measurement unit for measuring a surface pulse wave of an object. The surface pulse wave measurement unit includes at least one light source that radiates incoherent light and at least one photodetector that measures an intensity of light radiated by the at least one light source and reflected from a surface of the object. The surface pulse wave measurement unit measures the surface pulse wave of the object based on a change in the intensity of the light reflected from the surface of the object.
Abstract:
A detachable biosignal complex sensor includes a clip type structure including: a circuit module configured to receive a biosignal of a subject and perform signal processing on the biosignal, a first plate, and a second plate having an end thereof which is rotatably connected to an end of the first plate so that the clip type structure is configured to be fastened to an item; and a sensor and electrodes provided on outer surfaces of the first plate and the second plate and configured to obtain the biosignal and transmit the obtained biosignal to the circuit module.
Abstract:
A method of processing a bio-signal includes: generating a motion pattern from a motion of an object body; estimating a next point in time of a motion occurrence from the motion pattern; and generating a bio-signal pattern by combining an attenuation factor with a bio-signal of the object body at the estimated next point in time of the motion occurrence.
Abstract:
Provided are apparatuses and methods for detecting biological information. An apparatus for detecting biological information may include a biological signal measurement unit having at least two light emission elements having different light emission angles. The at least two light emission elements may include different types of light sources. The at least two light emission elements may include multiple light sources of the same type, and in this case, an optical element configured to adjust a light emission angle of one of the light sources may be provided. The apparatus for detecting biological information may include a biological signal measurement unit including a light emitting unit having variable light emission angle. The apparatus for detecting biological information may further include a data processor configured to extract and analyze biological information of a subject from data measured by the biological signal measurement unit.
Abstract:
An apparatus for simultaneously detecting surface pressure and blood volume of an object and a method of detecting the same are provided. The apparatus includes a printed circuit board (PCB); a light emitter disposed on the PCB which emits light of a first wavelength and light of a second wavelength; a first light receiver which detects light of the first wavelength and a second light receiver which detects light of the second wavelength; a transparent elastic body on the PCB which covers the light emitter, the first light receiver, and the second light receiver; and a dichroic coating formed on the transparent elastic body. The dichroic coating reflects light of the first wavelength and transmits light of the second wavelength.
Abstract:
A portable healthcare device and a method of operating the same are provided. The portable healthcare device detects biometric information of a user; obtains health state information of the user from the biometric information; and projects an image of the health state information, on a projection surface, in parallel with a reference axis, regardless of an orientation angle of the portable healthcare device.
Abstract:
Provided is an apparatus and method for detecting biometric information. The apparatus may include a biometric signal measurer comprising a light-receiving element and a plurality of light-emitting elements; and a processor including a tracking unit configured to sequentially drive the plurality of light-emitting elements, receive a signal detected by the light-receiving element, and determine a tracking line that connects at least two positions of a radial artery of the object from the received signal; and an analyzing unit configured to detect a pulse wave signal at the at least two points on the tracking line and analyze biometric information from the detected pulse wave signal.