Method for rendering relighted 3D portrait of person and computing device for the same

    公开(公告)号:US12229880B2

    公开(公告)日:2025-02-18

    申请号:US18513716

    申请日:2023-11-20

    Abstract: The disclosure provides a method for generating relightable 3D portrait using a deep neural network and a computing device implementing the method. A possibility of obtaining, in real time and on computing devices having limited processing resources, realistically relighted 3D portraits having quality higher or at least comparable to quality achieved by prior art solutions, but without utilizing complex and costly equipment is provided. A method for rendering a relighted 3D portrait of a person, the method including: receiving an input defining a camera viewpoint and lighting conditions, rasterizing latent descriptors of a 3D point cloud at different resolutions based on the camera viewpoint to obtain rasterized images, wherein the 3D point cloud is generated based on a sequence of images captured by a camera with a blinking flash while moving the camera at least partly around an upper body, the sequence of images comprising a set of flash images and a set of no-flash images, processing the rasterized images with a deep neural network to predict albedo, normals, environmental shadow maps, and segmentation mask for the received camera viewpoint, and fusing the predicted albedo, normals, environmental shadow maps, and segmentation mask into the relighted 3D portrait based on the lighting conditions.

    Electronic device and controlling method thereof

    公开(公告)号:US11568645B2

    公开(公告)日:2023-01-31

    申请号:US16823752

    申请日:2020-03-19

    Abstract: An electronic device and a controlling method thereof are provided. A controlling method of an electronic device according to the disclosure includes: performing first learning for a neural network model for acquiring a video sequence including a talking head of a random user based on a plurality of learning video sequences including talking heads of a plurality of users, performing second learning for fine-tuning the neural network model based on at least one image including a talking head of a first user different from the plurality of users and first landmark information included in the at least one image, and acquiring a first video sequence including the talking head of the first user based on the at least one image and pre-stored second landmark information using the neural network model for which the first learning and the second learning were performed.

Patent Agency Ranking