摘要:
A method of correcting image latency in implementing augmented reality includes receiving a first image including frames, in which a time point and a pose of an electronic apparatus for each frame are recorded, from an external apparatus; rendering the first image; receiving first data corresponding to a first time point of a first frame; receiving second data corresponding to a second time point of a second frame; calculating a respective pose of the electronic apparatus for each scan line of a second image based on the first data and the second data; calculating a pixel shift for each pixel in each scan line based on the respective pose calculated for each scan line; generating the second image by correcting the first image based on the pixel shift; and transmitting the second image to the external apparatus.
摘要:
A preconditioned conjugate gradient (PCG) solver, embedded in an electronic device to perform a simultaneous localization and mapping (SLAM) operation, includes an image database, a factor graph database, and a back-end processor, wherein the back-end processor is configured to receive an image from the image database to perform re-localization, receive, from the factor graph database, data for calculating six degrees of freedom (DoF)-related components, construct a matrix including the six degrees of freedom-related components based on the received data, and load and rearrange the matrix and a vector, to perform calculation on each block of each row of the matrix and the vector, then output first data, and shift second data to a location of the first data.
摘要:
A 3D depth sensor and a method of measuring a distance to an object, using the 3D depth sensor, are provided. The 3D depth sensor includes a light source configured to emit light toward an object, and an optical shutter configured to modulate a waveform of light that is reflected from the object by changing a transmittance of the reflected light, the optical shutter comprising sections. The 3D depth sensor further includes an optical shutter driver configured to operate the sections of the optical shutter independently from one another, and a controller configured to control the light source and the optical shutter driver.
摘要:
A camera includes: a light source configured to emit an infrared (IR) signal; a receiver configured to receive a reflected IR signal, the reflected signal corresponding to the IR signal being reflected from an object; and a processor configured to generate an IR image based on the reflected IR signal, determine whether the IR image is saturated based on comparison between at least one pixel value of the IR image and a reference pixel value, and control an intensity of the IR signal emitted by the light source based on a result of the determination.
摘要:
A three-dimensional (3D) depth sensor may include: a plurality of light sources configured to irradiate light to an object, the light having different center wavelengths; an optical shutter configured to allow reflected light reflected from the object to pass through; and an image sensor configured to filter the reflected light having passed through the optical shutter and detect the filtered light.
摘要:
A three-dimensional (3D) image sensor module including: an oscillator configured to output a distortion-compensated oscillation frequency as a driving voltage of a sine wave biased with a bias voltage; an optical shutter configured to vary transmittance of reflective light reflected from a subject, according to the driving voltage, and to modulate the reflective light into at least two optical modulation signals having different phases; and an image generator configured to generate image data about the subject, the image data including depth information that is calculated based on a difference between the phases of the at least two optical modulation signals
摘要:
Provided is an apparatus and method of recognizing a movement of a subject. The apparatus includes a light source configured to emit light to the subject and an image sensor configured to receive light reflected from the subject. The apparatus includes a processor configured to detect a pixel that is receiving the reflected light, the pixel being included in a pixel array of the image sensor. The processor is configured to track the movement of the subject based on a change in a position of the detected pixel.
摘要:
An apparatus and method with depth estimation are disclosed. The method includes calculating a first reliability of each of a plurality of time of flight (ToF) pixels of a ToF image; and generating, based on the first reliabilities, a depth map of a scene based on a left image and a right image and selectively based on the ToF image.
摘要:
Provided is an accelerator provided in an electronic device and configured to perform simultaneous localization and mapping (SLAM), the accelerator including a factor graph database, a memory, and a back-end processor, wherein the back-end processor is configured to receive a first piece of data corresponding to map points and camera positions from the factor graph database, convert the received first piece of data into a matrix for the map points and a matrix for the camera positions, store, in the memory, results obtained by performing an optimization calculation on the matrix for the map points and a matrix for at least one camera position, among the camera positions, corresponding to the map points, and obtain a second piece of data optimized with respect to the first piece of data based on the results stored in the memory.
摘要:
An apparatus and method for obtaining a depth image are provided. The apparatus may include a light source configured to emit first light to a first region of an object for a first time period and emit second light to a second region of the object for a second time period, the first light and the second light respectively being reflected from the first region and the second region; and an image obtainer configured to obtain a first partial depth image based on the reflected first light, obtain a second partial depth image based on the reflected second light, and obtain a first depth image of the object based on the first partial depth image and the second partial depth image.